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Abstract

Electrical Impedance Tomography (EIT) is a relatively new medical imaging method which,

by injecting current and measuring voltage, estimates a volume conductivity map of the sub-

ject. It has the potential to become a portable noninvasive imaging technique of particular use

in imaging brain function. A good estimate of the modelling parameters is essential for abso-

lute image reconstruction. While biological tissue like bone and white matter is anisotropic,

clinical applications have assumed isotropic conductivity and adopted linear reconstruction of

time difference data, as this is less affected by systematic errors. In previous studies, measured

scalp impedance changes during evoked response on adults and on neonates were consistent,

yet data had a low signal-to-noise ratio and image localisation using truncated singular-value-

decomposition and a fixed truncation level was unsuccessful. There were four main goals in

this thesis. The first goal was to examine ways of optimising linear reconstruction. This was

attempted by comparison of standard methods for selecting the truncation level with modelling

of the covariance of the noise. When examined on data from simulation, a head-shaped saline

tank, and scalp neonatal evoked responses, there was no significant difference among selection

methods, yet modelling a general covariance of the noise led to a significant improvement for

simulated data. The second goal was to reduce the noise by applying Principal Component

Analysis (PCA), for the case of EIT images collected during cortical evoked responses in the

neonate. PCA significantly improved the SNR by 15dB on both tank and neonatal data. The

third goal was to study the possibility of the recovery of a piecewise linear anisotropic tensor

with known eigenvectors. It was possible to recover three smooth eigenvalues for simulated

conductivity distributions with eigenvectors generally orientated and for a conductivity tensor

estimated from diffusion weighted MRI. The fourth goal was to develop a method for incor-

porating anisotropy in a forward numerical model for EIT of the head and assess the resulting

improvement in image quality. Neglecting anisotropy of the scalp, skull, and brain, yielded a

50% error in the forward solution and 24mm localisation error for a linearised inverse solution.

This suggests that use of anisotropy is likely to improve EIT image quality.
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Chapter 1

Introduction

There have been great advances in medical imaging in the past two decades. It has now been

widely and routinely adopted as a diagnostic tool. For example, brain function is imaged in

normal and abnormal brain by measuring mechanism associated with neuronal activity like cell

swelling during epilepsy [109] and changes in blood flow, blood volume, and blood oxygenation

level during normal brain activity [68].

For imaging brain function, the techniques of Functional Magnetic Resonance Imaging

(F-MRI) [133] and Positron Emission Tomography (PET) [137] are able to supply most of

the demands and have made a huge improvement in patient management and cognitive neu-

roscience. The group in which I have been working at University College London has been

pioneering the use of Electrical Impedance Tomography (EIT) for imaging brain function. EIT

is a relatively new medical imaging method, which has the advantages that it is small, portable

safe and noninvasive. Set against this is a relatively poor spatial resolution. Nevertheless, there

are several applications in imaging brain function where it has the potential to yield images not

possible or practical with other methods. These include imaging in an emergency situation in

acute stroke, where the portability of EIT could confer an advantage in deciding whether clot-

busting treatments could be used. Acute stroke can be treated with clotbusting drugs if they are

administered within 3-6 hours of the stroke onset, but imaging is previously required to elimi-

nate the possibility of haemorrhage, as the clotbusting treatment would make this worse. Thus,

EIT could be used in the casualty department and in ambulances [115, 145]. Another possible

application is the use of EIT at low frequencies to image neuronal, depolarisation during normal

activity. It could also be used in cognitive neuroscience to provide a low cost portable system

for imaging blood flow changes related to functional activity.

My PhD work was funded by the Epilepsy Research Foundation and so I have had a

particular interest in the possible application of EIT to imaging in epilepsy. Many epilep-

tic patients can be treated with drugs, but some continue to have seizures and these may be
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treated surgically. Before operation, they are intensively investigated on a ward, where Electro-

Encephalography (EEG) and video are collected over days while they have several seizures.

This is termed video-EEG telemetry. Although this has been effective, neither scalp EEG or

structural MRI used can give direct information about the local part of the brain where the

seizure starts. This can only be obtained with invasive depth electrodes, which is expensive and

hazardous procedure. In addition, surgery fails in fourth of cases, which may be caused by inac-

curate localisation or the existence of several foci [45]. Thus, EIT could be used in continuous

non-invasive monitoring for imaging conductivity changes related to epilepsy.

Inverse source modelling of the EEG has a unique inverse solution under ideal circum-

stances where the nature and number of sources are known and there are 6 independent mea-

surements for each reconstructed source. Unfortunately, in vivo recordings in the brain, these

requirements are not met and so the inverse solution is non-unique. In order to produce a unique

solution, the inverse is constrained, for example by imposing a criterion for smoothness [134] or

for the likelihood of activation of the different parts of the brain [171]. In practice, good results

are achieved for simple sources near the surface of the brain, such as cortical evoked responses,

but deeper responses may also be accurately modelled, especially if simple such as deep evoked

responses such as those coming from the brainstem in brain stem evoked potentials.

The main drawback of EIT is its low spatial resolution. This is mainly because the image

reconstruction problem is not well-posed, being more sensitive to modelling and experimental

errors than to body electrical properties, and data sampling is usually incomplete. In the last

two decades, a large number of papers have been published, which deal with non well-posed

problems. They have mainly addressed numerical methods and optimisation methods, but there

is a scarcity of testing with real clinical data. The objective of this thesis was to develop methods

which would build on existing work with linear reconstruction algorithms for EIT of the head,

and to try and develop improved methods for image reconstruction.

This introductory chapter is divided into four sections. The first section covers, first, imag-

ing terminology, applications, modalities, and the relation between imaging and inverse prob-

lems; and then focuses on medical imaging and imaging of brain function. The second section

is dedicated to EIT starting with its history, applications, characteristics, and EIT of brain func-

tion, and finalising with EIT algorithms. The last two sections set up the goals and outline of

this thesis.
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1.1 Overview of imaging

In this section, an introduction to brain functional imaging and its relation to other imaging ap-

plications is presented. First, imaging in general is introduced. This includes other related imag-

ing applications and terminology. One of the most important concepts in this thesis, namely

inverse problems, is introduced. Second, a historical introduction to medical imaging is pro-

vided, followed by a presentation of the modalities, divided into structural and functional, that,

today, are applied clinically as well as those still in research. Then, an introduction to imaging

of brain function is presented.

1.1.1 Imaging and inverse problems

Imaging, meaning ‘to form an image’, has been used to explore astral objects, to probe micro-

scopic tissue, to depict a picture of the inside of the body or deep underground, to forecast the

weather, to detect moving objects using radar, to track movement, to find patterns on the earth

surface or in a picture, among many others. They all aim to gather and to reveal information in

varied areas such as medical diagnosis, astronomy, finance, and so on.

Tomography, which comes from the Greek meaning ‘slice’, was born in radiology where

different modalities were employed in an attempt to image slices of the body. Following the

precedent set by Computerised Tomography (CT), many imaging techniques have since adopted

this term, e.g.: PET, Single Photon Emission Computerised Tomography (SPECT), Optical

Tomography (OT) [8], and EIT. Electromagnetic tomography techniques, as well as EIT, are

Electrical Capacitance Tomography (ECT), Magnetic Induction Tomography (MIT) and Mag-

netostatic Permeability Tomography (MPT) [159].

The concepts of Forward Problem (FP) and Inverse Problem (IP) appear in imaging, specif-

ically in tomography, when one attempts a mathematical explanation of the procedures. For

imaging, basically, one measures a type of data and aims to image a parameterised property

of an object. For this purpose, first, the FP, or mathematical model of how the data depends

on the model parameters, is obtained. LetF be the forward operator that maps the parameters

x ∈ Sx, whereSx is the volume parameter space, into the boundary datad ∈ Sd, whereSd is

the boundary data space, that is,

F : Sx 7−→ Sd. (1.1)

Then the IP, which is the inverse of the FP, aims to estimate the object parameters from the ex-

perimental data. Thus, an inverse operator can be defined as the inverse of the forward operator

(1.1) as

F−1 : Sd 7−→ Sx. (1.2)



36 Chapter 1. Introduction

In the case of tomography, for example, experimental data that has interacted with the object is

mapped by the IP into a two or three-dimensional distribution of a specific property of the ob-

ject. In the statistical framework, the deterministic concept of IP is called inference, estimation,

or regression; yet it seeks the same goal [43], [176, Chapter 4].

An example of a number of IP applications are presented below. In elastodynamics, one

may seek the elasticity parameter, cracks, or inclusions inside an object, by providing mechanic,

thermal, or electromagnetic excitations, which are modelled by Poisson’s equations with some

boundary conditions. Similar models appear for other inverse problems in electromagnetics or

acoustics [23].

The EIT problem, whose FP is modelled by the generalized Laplace’s equation, aims to

recover the conductivity inside an object by injecting current and measuring voltage on the

boundary [24].

The Resistor Network (RN) problem aims to detect a failure in a resistor by injecting

current and measuring voltages at the external nodes of the network. Its FP is modelled by the

generalized Laplace’s equation where a 2D EIT problem has a RN equivalent, but the opposite

is not always true. While the RN and the EIT forward problems are similar, the IP approach to

the RN problem is more unstable, and thus it is not considered in this thesis [100, 37]; besides;

uniqueness holds only for special planar rectangular design [35].

Other IP applications include financial markets [28], microwave imaging, and astronomical

imaging. The IP in quantum mechanics, for example, provides insight and understanding of the

change in energy corresponding to an specific perturbed potential [186]. In radar, which was

invented in the 30s, an attempt was made to solve the scattering IP for civil and military aviation

[25].

Two common characteristics among these IPs are the lack of existence and uniqueness of

a solution, and the non-linear relation between the data and the solution. These make the IP

ill-posed and very sensitive to noise in the data. Moreover, IPs have as common goal estimation

of the parameters that yield the model data that best fits the experimental data up to the noise

level. Besides, IPs share this goal with many areas of sciences where applied mathematics and

statistics are needed for minimising the discrepancy between the predicted and the experimen-

tal data. For example, computer vision, which extracts information from an image, is applied

to medical image analysis, image restoration, gesture analysis, surveillance, among others. In

medical image registration, one attempts to find a mapping between two images across modali-

ties or patients.



1.1. Overview of imaging 37

1.1.2 Medical imaging

1.1.2.1 A brief history

A brief history of imaging as one of the most significant inventions of the century can be found

in [125]; a brief summary is as follows.

The discovery of X-rays was a pioneering development in medical imaging. In the late

1920s, imaging as a diagnostic tool was introduced for early diagnosis of breast cancer by

using X-rays. In the early 50s, different applications using x-ray technology were developed:

X-ray crystallography, which revealed DNA structure and yielded a Nobel Prize, in the early

60s, for solving the structure of proteins myoglobin and haemoglobin; and fluoroscopy that

reduced the exposure to the x-rays radiation.

In the 60s, new techniques were introduced for diagnosis: PET, for tumour detection; Ultra

Sound (US), for obstetrics and gynaecology; and Nuclear Medicine Imaging (NMR), which

used gamma rays, for tumour detection.

The last decades were dominated by the development of computers. In the 70s, Comput-

erised Axial Tomography (CAT) provided several slices and 3D images and was used for brain

and spinal disorders; SPECT, for tumour detection. Also, MRI appeared in the medical scene

with the development of computers and provided an improvement with respect to CAT although

it was not ready till the 80s. The 90s brought FMRI for imaging brain activity after thought and

motor stimulation.

1.1.2.2 Imaging modalities

Medical imaging can be divided into two type of modalities with respect to their purpose:

anatomical and functional. Anatomical imaging techniques that resolve tissue structure are

X-ray, CT, MRI, US, among others (Figure 1.1). Functional modalities, which image body

activity, are FMRI, SPECT, PET (Figure 1.2); still at research level: the source localisation

techniques EEG and Magneto-Encelography (MEG); EIT, OT, functional CT, Magnetic Reso-

nance Elastography (MRE) (Figure 1.3). Some imaging techniques are based on the previous

ones like Magnetic Resonance EIT (MR-EIT) [126].

Hard field modalities, like CT or MRI, are characterised by the value of the field at one

point being independent of any other point, which makes it easier to track the field path and

leads to high resolution images. In contrast, soft field modalities, like EIT or OT, are charac-

terised by the field at a point being a function of all points where it spreads, which leads to

very low spatial resolution and an image reconstruction problem that is not well-conditioned

[119, 139]. Thus, soft field modalities are mainly used for functional imaging, for which reso-

lution does not need to be as high as for hard field modalities.



38 Chapter 1. Introduction

(a) MRI image (b) CT image

(c) DTMRI image (d) US image

Figure 1.1: Anatomical brain images by different modalities: a) MRI (Wipro GE Healthcare,

http://www.gehealthcare.com/inen/rad/mri/products/openspeed/osneuro6.html), b)

CT image (Casey Hospital CT Department, Southern Health Diagnostic Imaging,

http://www.southernhealth.org.au/ imaging/ctcaseyequip.htm), c) DTMRI image where

colors specify diffusion directions (Beth Meyerand, Applied Neuro MRI Lab,

http://128.104.229.200/fmri/dti.html), d) US image of a normal brain in an infant in the NICU

(Ultrasound division, Children’s Hospital Boston,

http://www.childrenshospital.org/clinicalservices/Site1867/mainpageS1867P0.html).
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(a) PET image (b) SPECT image

(c) FMRI image (d) PET image

Figure 1.2: Functional brain images by different modalities: a) PET image (WNEM TV5, Your

Health: Spotlight On Alzheimer’s Disease,

http://www.wnem.com/Global/story.asp? S=1935894&nav=menu976), and for functional

imaging: b) SPECT image (PET imaging at the UCI Brain Imaging Center (BIC),

http://www.bic.uci.edu/PETImaging.htm), c) FMRI image of visual cortex stimulation

(http://www.imaging.robarts.ca/˜jgati/Pages/ fMRI.html), d) PET image of a subject while

thinking (Crump Institute for molecular imaging, from Michael E. Phelps, Dept. of Molec-

ular and Medical Pharmacology, UCLA School of Medicine

http://www.crump.ucla.edu/software/lpp/clinpetneuro/function.html#Function).
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(a) OT image

(b) EIT image

Figure 1.3: Functional brain images by different modalities: a) OT transverse, coronal, and

sagittal images of an infant (Biomedical Optics Research Laboratory, UCL,

http://www.medphys.ucl.ac.uk/research/borl/research/monstir/neonatal.htm, [67]), b) EIT im-

age during left motor stimulation (Med. Phys. Dep., UCL).
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CT was the first modality used clinically. It denotes those modalities that seeks the recov-

ery of a function by means of line integrals [119]. The leading technique is Transmission CT

where X-rays are sent from several sources and their intensity is measured after having inter-

acted with the object of study. By covering a plane with line integrals and assuming that there

is no scattering, a cross-section of the body is imaged by inverting the Radon transform, which

relates the line integral with surfaces; or volumes, in case of covering a volume. Other CT-type

modalities are SPECT and PET,

MRI discriminates different tissues with respect to their amount of water. Atoms of hy-

drogen in the molecules of water, which act as tiny magnetic dipoles, get aligned when a pulse

of radiofrequency is applied. Then they release energy when they return to the position of

equilibrium, which is collected and amplified by external coils [133].

For anisotropic materials, like muscle tissue or white matter, which present an aligned

microstructure providing a preferred direction on the diffusion of water molecules, DT-MRI

relates the microscopic with the macroscopic diffusion tensor [3, 172]. For this purpose, DT-

MRI is required to apply diffusion MRI, at least seven directions so as to characterise the six

components of the diffusion tensor and a constant. MR has been applied mainly to the brain;

other applications are breast, kidney, and liver; DT-MRI outside the brain has been applied to

the tongue and heart [19, 17].

In PET, radioisotopes emit a positron that interacts with an electron, and as a consequence

of their annihilation, two photons are emitted 180 degrees apart which are detected by the sys-

tem. It was developed in the 50s, but initial images were blurred. Image quality improved in

the 70s, due to improved hardware which allowed more photon counts per image, iterative al-

gorithms and, filtered back projection and Fourier based methods [137]. PET may be applied

to diagnosis of Alzheimer’s disease, cardiovascular diseases, and cancer; it can image can-

cer lesions and discriminate benign and malignant lesions in cases where CT or MRI cannot.

Moreover, PET can be also applied for imaging brain activity.

Two areas of relevant interest for us are medical image registration and multimodal-

ity. Medical image registration is used to compare images, for example, for diagnosis before

epilepsy surgery where images correspond to different modalities; it also allows inter-subject

comparison [110]. The registration procedure requires several criteria where the most relevant

are the feature to be compared, whether based on segmentation or based on information content,

the transformation type mapping between images, and the optimisation procedure [103, 110].

Special care needs to be taken when applying transformations on tensors; tensors have different

transformation rules than vectors, which have been studied for DT-MRI [4, 34]. In contrast to
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the comparison of images from different modalities in medical image registration, multimodal-

ity imaging combines the advantages of two modalities by solving both problems simultane-

ously, e.g. PET and x-ray CT [137].

In EIT, low frequency electrical fields propagating throughout the subject can be modelled

by the generalized Laplace’s equation, which is equivalent to the propagation of heat in a room

where an external source may be a heating system. In this situation, the temperature at one

point of the room far from the source depends on the conductive properties at all points the heat

flow has travelled up to there. In a more complex medium, one may also consider anisotropic

properties of the medium, which favours special directions at each point.

Some biological tissue especially bone, muscle, and brain white matter - is highly

anisotropic. In principle it might seem desirable to model anisotropy for EIT, but there have

not been many attempts because the image reconstruction problem is more complicated and,

in the past, there has been a lack of anisotropic conductivity tensor estimates. The first stud-

ies contemplating numerical simulations of anisotropy in EIT are reviewed in the next section.

An estimate of the anisotropic conductivity tensor can be obtained from the diffusion tensor

by using the cross-property relation. This is a relationship between different transport tensors,

that, for the case of the diffusion and conductivity tensors, is given in terms of the intra- and

extracellular space, such that, both tensors share eigenvectors, and, for low frequencies, their

eigenvalues are linearly proportional [66][172, Chapter 5].

A combination of MRI and EIT, MR-EIT, in which one injects electrical current using EIT

and measures the magnetic flux density with MRI, has taken the first steps to provide numerical

anisotropic conductivity images based on the MR-EIT model, assuming symmetry in the z-

direction [156].

1.1.3 Imaging of brain function

How the brain works has been a mystery. A brief review of the history of brain function and

physiology is presented below [133].

In the mid of the 19th century, some studies related brain and mind by associating physi-

ological disorders, like aphasia or problems with speech, with damages in specific parts of the

left hemisphere of the brain. This allowed creation of a map for several functional regions of

the brain [148] (Figure 1.4). Quoting the neurologist Sacks regarding one of his patient who

suffered a massive tumour in the visual cortex:

Sometimes a student would present himself, and Dr. P. would not recognise him;

... The moment the student spoke, he would be recognised by his voice.
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Figure 1.4: Map of functional regions of the brain (BBC News, Monday, 7 June, 1999, 18:39

GMT 19:39 UK,

http://news.bbc.co.uk/2/hi/health/medicalnotes/363368.stm)

Mapping of functional regions was developed through animal studies where provoking brain

lesions produced functional disorders. However, Freud soon realised that this identification was

rather simplistic and focused only on the most specialised regions [148]. Besides, lesions can

damage more than the provoked region, complicating the diagnosis.

In the late 1970s, imaging innovated clinical diagnosis by localising brain tumours using

x-ray CT. At present, FMRI and PET can be used to identify in vivo activated regions of the

brain while it carries out a specific activity - they teach us how the brain works. Also, EEG has

been widely used by neurophysiologists treating epilepsy.

What happens in the brain when it gets activated? Some excitation encoded as an electric

impulse reaches the axon of a neuron, which releases chemical transmitters when the impulse

exceeds a threshold, and then it is transferred onto the synapse and from there onto the dendrites

of other neurons. When this process continues, a region is activated. This activation that is ac-

companied by energy consumption demands an increase of oxygen, and so it yields an increase

of blood flow, which is known as the haemodynamic response.

Consequently, there are two types of physiological effects related to brain activity. Fast
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brain activity occurs over tens of milliseconds, and a transfer of ions during neuronal depolari-

sation yields a decrease of local electrical resistivity of1% during evoked responses [52]. Slow

brain activity, occurring over tens of milliseconds, is the consequence of the overlapping effect

of millions of neurons that yields a regional Cerebral Blood Flow (rCBF) or Volume (rCBV)

change of the order of10% during visual stimulation [168].

In addition to normal brain activity, brain function includes activity in the abnormal brain

due to epilepsy and stroke.

EEG and MEG can detect fast brain activity by using 64-128 channels and sampling rates

up to 8KHz. However, inverse source modelling, which attempts to image the sources of the

brain activity, is not uniquely determined. Finding a unique solution has been achieved by

constraining the solution to a small number of dipoles; another approach has considered all

possible source locations by using Tikhonov regularisation and assuming MRI-based priors

[138].

EIT measuring hundred times a second could be used for imaging fast neuronal activity, as

an alternative to EEG with similar temporal and spatial resolution, but in contrast with EEG, in

EIT the source is known; yet EIT data SNR on the present-day is very low for those tiny signals

[51, 52].

FMRI and PET have been used for imaging changes in rCBF. FMRI can measure changes

in blood flow and blood oxygenation level [68]; it obtains, first, an structural image and then

statistically maps a change of rCBF. FMRI measured changes of1.8% in rCBF and blood oxy-

genation in the visual cortex under8Hz flash stimulation [99]. These results are in agreement

with PET studies where increases of rCBF were seen during different brain stimulations [113].

The standard structural imaging techniques fMRI and PET have high spatial resolution, of

millimetre accuracy, but low temporal resolution, of a few seconds, limited by changes in blood

flow. In contrast, EEG/MEG source localisation techniques have a high temporal resolution,

of milliseconds, measuring fast neuronal activity, but they have a low spatial resolution, of ten

millimetres or so. EIT belongs with EEG/MEG to the group of functional imaging techniques

of low spatial resolution but high temporal resolution [75].

Although FMRI and PET are the leading techniques for imaging slow brain activity, new

modalities like EIT and OT are being developed and, may in time provide an alternative since

they are portable, non-invasive, and cheaper.
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1.2 Electrical impedance tomography

1.2.1 History and background

Different materials have dissimilar electrical conductivity; therefore, conductivity can be ex-

ploited for providing a volume map that differentiates materials of different electrical properties,

for example, for detecting water in the lung.

In 1980, Caldeŕon proposed the problem of determining under what conditions a unique

conductivity could be recovered from boundary voltage [81]. Uniqueness for isotropic con-

ductivities has been proved [92, 93, 165]. Nevertheless, anisotropic conductivities cannot be

uniquely determined by boundary voltages [101], unless, some a-priori information is provided

[104]. Providing uniqueness for an inverse problem is analogous to assuming stability under

certain constraints [83], where stability can be studied by looking at the conditioning of a given

mapping. Stability for EIT algorithms has been reviewed in [24].

EIT refers the imaging technique that, by applying current and measuring voltage at the

boundary, or vice versa, provides a volume complex conductivity. In principle, under a perfect

knowledge of the boundary shape, this current-to-voltage map depends uniquely on the conduc-

tivity. In practice, one does not have a full knowledge of this map; in addition, the measured

voltage strongly depends on the electrode contact impedance, position of the electrodes, and

boundary shape.

This dependence has yielded three different modalities of EIT: static, dynamical, and mul-

tifrequency. Static imaging aims to reconstruct an absolute conductivity [31, 120], and is the

most difficult of the three because there is a strong dependency of the measured boundary

impedance on external parameters [97]. In dynamical imaging, a change of conductivity is

recovered from a small change of boundary impedance; it requires a reference, and enables a

reduction of the errors. EIT Spectroscopy (EITS), also called multifrequency EIT, takes advan-

tage of differences in conductivity between different tissues over a frequency range [57].

In the early years, EIT was limited to the 2D case where a cross-section of the body,

delimited by a ring of electrodes, was imaged. In the 1980s, a back projection reconstruction

algorithm for EIT was suggested by Barber and Brown [13] and explained numerically in [151].

This approach assumed a 2-D linear version of Poisson’s equation and that the initial conduc-

tivity was homogeneous. Although it was widely used, these assumptions were proved to be

crude. Nowadays, a 3D nonlinear model of the electrical fields is widely used [117, 120], with

modelling of the electrodes [31], and in real-time [22]. The Electrical Impedance and Diffuse

Optical Reconstruction Software (EIDORS), a MATLAB toolbox for the 3D EIT problem with

modelling of the electrodes, is freely available [140].
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Clinically, EIT could provide a non-invasive, safe, portable, and cheap imaging technique,

by measuring electrical impedance on electrodes placed on the skin of the subject; it permits

estimation a volume conductivity map of the body. History and general references can be found

in [75]. In the early 80s, clinical EIT was born at Sheffield with a system that was suitable for

humans, the Sheffield Mark I, which became commercially available. At this early stage, most

clinical studies were carried out with that system, which provided difference imaging only and

was successfully applied to gastric emptying and ventilation [74].

So far, the EIT community has been divided into groups dealing with algorithm develop-

ment, where diverse nonlinear reconstruction methods have been used; and groups that seek

success experimentally, for which linear reconstruction methods have been adopted. At the

moment, EIT is being developed and modelling and other specific issues must be addressed

[106].

1.2.2 Applications

Most of EIT applications are in Geophysics [132], medical imaging, and process tomography.

Process tomography has applied Electrical Resistivity Tomography (ERT) for imaging particle

transportation through pipes [178]. EIT for medical applications has been successfully applied

to imaging gastric emptying [111], gastric acid secretion, and lung ventilation [117, 65]. Other

possible applications which are under development are lung water detection; hyperthermia;

imaging breast cancer with EITS [128]; detecting intraperitoneal fluid [149]; imaging brain

functional activity: epilepsy, discerning between cerebral ischaemia and haemorrhage [73, 72],

detecting intraventricular haemorrhage in neonates, and normal brain functional activity [168].

A review can be found in [30, 74, 75].

As for other applications, for instance, EIT has been proposed for crack detection where

experiments have been done in 2D by using a resistor network approach [100].

1.2.3 EIT systems for medical applications

EIT systems for medical applications have been used, now, for nearly three decades. A review

of EIT systems and instrumentation can be found in [30].

1.2.3.1 Systems for medical applications

The first system used clinically was the Sheffield Mark I, which, developed in 1987, injected

current at 5mA at 50KHz, had 104 independent adjacent measurements, and took a measure-

ment every 40ms. An improved system, the Sheffield MK3.5, measured both the real and imag-

inary part of the impedance, injecting a current, at 30 frequencies in the range2KHz-1.6MHz,

using an adjacent drive and 8 electrodes [180].
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A modified version of the Sheffield system, at UCL, the UCLH Mark-II/Sheffield MK3.5

system, was designed for multifrequency with a frequency range20− 500KHz [116].

An adaptive current system, the ACT3 system, injected a sinusoidal current pattern which

was proved to optimise the current injection pattern. It injected 0.5mA peak of sinusoidal

current at29KHz, using 32 electrodes and taking an image in133ms [53, 33].

Below 100kHz, the resistive component of biological tissue is predominant over the ca-

pacitive one. Almost all clinical applications have worked at around50KHz and have neglected

the imaginary part of the complex impedance. However, for pathologies like stroke, for which

a reference is not available, one may use multifrequency EIT, compensating for the lack of a

time reference by using a large range of frequencies [116].

EIT systems for medical applications as any other electrical equipment must follow safety

regulations that limit the maximum power dissipated in the body. It is common to limit the

total current than can be injected into the patient and the leakage currents [50]. The maximum

current that can be used depends on the frequency used. The IEC 610-1 regulations for current

applied to the skin permit100µA at1KHz which scales linearly with applied current inKHz

up to a maximum of5mA at50KHz and above. A limit in the leakage currents that flow from

the patient to the ground protects the patient in case of malfunctioning. This limit corresponds

to about10% of the threshold at which sensation occurs. EIT systems apply less than this - a

typical figure would be5mA at50KHz.

1.2.3.2 Resolution

A high temporal resolution is one of the advantages of EIT. For example, a measurement is

acquired every40ms with the Sheffield Mark I.

Spatial resolution is the main disadvantage. It depends on the number of electrodes, type

of current pattern, which electrode combinations are selected from among all possible ones -

this is termed the electrode protocol, and noise. Early studies, summarised in [74], showed

spatial resolution of12 − 20% of the diameter of a ring of electrodes, where spatial resolution

is defined as the smallest distance to separate two objects. The smallest values were obtained

near the edge, for radially moved perturbations; the largest values were near the centre, for

tangentially moved perturbations.

1.2.3.3 Current injection protocol

The type of current pattern and electrode combinations used for injecting the current determine

the information content in the data, which can be quantified by the number of independent

measurements. While an optimum sinusoidal current pattern can be applied using all electrodes

[31, 53], less computationally and instrumentationally demanding current patterns have been
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preferred: an adjacent injection has been applied to cylindrical objects, and a diametric injection

has been used for providing deeper sensitivity.

For an adjacent protocol, givenN electrodes, there areN adjacent pairs for the injection

andN − 1 pairs for the measurement; therefore, the number of independent measurements is

given byN(N−1)/2 [12]. Thus, the number of independent measurements is 120 with 16 elec-

trodes, acquired in0.5s, and 8128 with 128 electrodes, acquired in20s where measurements

were taken in serial, and acquisition time could be improved by measuring in parallel [12]. If

one excludes the drive electrodes used for measuring, then there areN(N − 3)/2 independent

measurements for the adjacent protocol.

The adjacent protocol has been used for rings of electrodes placed on cylindrical bodies.

However, for some applications, like EIT of the brain, since electrodes are not equally spaced

throughout the head surface, one may consider other electrode combinations. In practice, it is

impractical to use all possible combinations where the total number of combinations is given

by CN,2CN−2,2 = N(N − 1)(N − 2)(N − 3)/4, which is over two hundred thousand for 32

electrodes. Since an adjacent injection provides more sensitivity near the boundary, diamet-

ric injection has been used for EIT of brain function, as this provides deeper sensitivity [15].

However, this required the selection of a set of electrode combinations.

Thus, use of an arbitrary protocol requires selection of a small number of measurements

among all possible ones. A complete search across all possibilities is computationally impossi-

ble [107]; for example, for 32 electrodes, even fixing the length of a protocol to 200 measure-

ments and constraining the searching space to 1000 possible combinations, the selection yields

C1000,200 ' 10208 comparisons. Thus, the problem of obtaining an optimum protocol for a

general combination of electrodes, for which one must constrain the searching space, remains

open.

1.2.3.4 Electrodes

The number, location, and contact impedance of electrodes influences the image resolution.

How many electrodes should be used? In principle, adding more electrodes will improve the

spatial resolution up to some limit since it augments the number of independent measurements.

Nevertheless, it has been pointed out that as one increases the number of electrodes, noise

appears more significant because the potential gradient is proportional toN−2 [12]. Thus, it

was reported that going from 32 to 128 electrodes, using adjacent measurements at 1mA on a

human arm, led the smallest measured potential to go from80µV to 5µV . As a measure of

the electrode noise, it was reported that Johnson noise, for an electrode impedance of1KΩ and

electrode surface of4mm2, at 50KHz was0.9µV .
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Figure 1.5: 31-electrode positions designed for the human head at UCL based on the 10-20

EEG electrode localisation protocol.

An optimum position for electrodes for general 3D objects is not clear. The UCL group

has used, for EIT of brain function, 31 electrode positions (Figure 1.5) based on the 10-20 EEG

electrode location protocol [20].

It is essential to model the contact impedance of the skin-electrode interface because there

is a potential drop, explained by Ohm’s law asZI, when a currentI passes through the contact

impedanceZ [82, 135]. For medical applications,Z could be described in parallel as the

resistive part of the gel, skin, and electrode added in serial and the impedance part corresponding

to the phase [74, Chapter 8][114].

1.2.3.5 Noise and experimental sources of error

Source of errors have been classified into random noise, systematic changes, and physiolog-

ical noise [74, Chapter 1]. Discrepancies between the model and the subject include bound-

ary shape, conductivity values, and anisotropy. Instrumentation issues are electrode contact

impedance, phase changing across electrodes, and stray capacitance in the electronic and leads.

Although calibration in saline tanks account for some sources of error, like discrepancies

between the model and the tank and some instrumentational errors, validations in vivo test

for electrode location and movement, isotropy and homogeneity assumption, and physiological
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noise. It was concluded that correction for those errors was difficult unless they were clearly

identified or random noise that could be averaged out. As a general figure, noise could be

decreased below1%. For example, for animal experiments, slow drifts in the cerebral cortex

were of0.5% [73]; for neonates scalp measurements, physiological and movement errors were

of 0.1−1%, and baseline drift in the upper abdomen was of5%, as summarised in [74, Chapter

1].

1.2.4 EIT of brain function

EIT may be applied to imaging brain function, where changes of cortical impedance measured

on the scalp are related to changes in local brain impedance. EIT of brain function has two

major applications: imaging fast brain activity, which occurs over milliseconds, due to action

potentials [51]; and imaging the slow brain activity, which occurs over seconds or minutes, in

epilepsy, ischaemia and haemorrhage, and normal brain activity. In this work, the focus is the

slow brain activity.

During epileptic activity there is a dominant local impedance increase due to cell swelling

and reduction of the extracellular space [109]. In cat and rabbits, using intracortical electrodes,

a predominant increase in impedance was explained as the effect of the electrolyte transport

into the cellular elements; yet a smaller decrease in impedance was explained by an increase of

metabolism and local vasodilatation [64]. Similar studies, in cats, found impedance increases

of 3.5 − 5% dominant to impedance decreases; and, for the long and strongest seizures, found

impedance increases of up to10− 12% [42]. Other studies found an increase in85% of cases,

a decrease in9%, and mixed in the rest [157]. An increase of10− 12% was found in most acti-

vated regions [41]; specifically, they found an increase in the resistive part and a decrease in the

capacitive part of the impedance. Using the Sheffield Mark 1 EIT system, impedance increases

of 5− 12% were imaged with a spatial resolution error of7− 12% of the imaging field [143].

An attempt for imaging epilepsy with scalp electrodes and an accurate head model has been

done where changes were excessively large compared to the reported animal experiments and

the model prediction; a more controlled baseline and less movement were reported as essential

for future studies [45].

During normal brain activity, a decrease of cortical impedance is related to an increase of

rCBV in the stimulated cortical area [49]. Using the Sheffield Mark 1 EIT system, impedance

decreases of4.5% have been imaged, in rabbits using cortical electrodes, during sensory evoked

responses [76]. A similar study found impedance decreases of2− 5% [143].

One may expect a decrease of one or two orders of magnitude on scalp electrodes, due

to the fact that the skull, which is hundreds times more resistive than the brain, diverts applied
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current. During visual stimulation, an impedance decrease of the order of0.5% was found

in scalp electrodes [168]. Although scalp impedance changes were consistent, localisation of

conductivity changes in the reconstructed images was unsuccessful. In neonates, an impedance

decrease of1%, larger than on adults, was explained on the basis that neonates have a smaller

volume response to the stimulation, yet present a smaller attenuation by the skull, which is not

calcified and mainly formed by cartilaginous tissue [166]. However, those impedance changes

meant a decrease of one order of magnitude with respect to local changes, contradicting new

model predictions that forecasted a decrease of50 − 100 times because of the shunting effect

of the skull [78].

For discerning haemorrhage from ischaemia in acute stroke, a feasibility study has been

undertaken which compared modelled scalp impedance changes with several modelling errors.

It concluded that EIT multifrequency could be an alternative to absolute imaging if electrode

positions were measured with millimetre accuracy and better estimates of tissue conductivity

were provided [78]. Simulated local resistivity changes up to75% due to ischemic tissue and

−750% due to haemorrhage tissue led to2% and−7% changes on the scalp [78].

In the last five years, some efforts have been made to produce an accurate model of the

head for EIT of brain function: the influence of the skull on localisation [167]; the influence

of a shell model versus a sphere model and numerical finite element method (FEM) versus

analytical formulation [108]; an accurate model of the head in which layers representing scalp,

CSF, skull, and brain obtained from MRI scan were incorporated [16, 11, 170].

The variability of tissue conductivity values published in the literature, many taken under

different conditions, and anisotropy makes accurate simulation in the forward problem difficult.

A extensive review of both pathological and healthy tissue of the head has been recently done

[79]. White matter in the brain and the skull are highly anisotropic. The skull is comprised of

different layers with diverse conductivity, making local inhomogeneity relevant and hardening

the estimation of a generic conductivity for the skull. For example, the resistivity of the tibia

was found to be1.55KΩcm−1 in the axial direction,15.79KΩcm−1 in the circumferential

direction, and21.5KΩcm−1 in the radial direction [150]. For the white matter, the anisotropic

conductivity tensor can be estimated from DT-MRI since the diffusion and conductivity tensors

share eigenvectors and eigenvalues are linearly proportional at low frequencies [172].

Influence of anisotropy of both white matter and skull and skull thickness have been stud-

ied for the EEG and EMG forward problem and inverse source localisation [127, 66, 182, 181].

It was found that the effect of anisotropy was most relevant for white matter when the source

was close to the cortex. Anisotropy of the skull gained importance for a deeper source in the
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brain; neglecting anisotropy yielded10% error on the forward solution. There does not appear

to have been any equivalent work for EIT.

1.2.5 EIT algorithms

The theory used in this thesis for the forward and inverse problems is given in the next three

chapters, but main issues from a general point of view are reviewed below. A review on EIT

algorithms can be found in [106, 24].

1.2.5.1 Forward problem

Reconstructing the conductivity requires, first, solution of the forward problem, that is, ob-

taining the electrical potential in the whole domain for an estimate of the conductivity. There

are several methods for solving the forward problem, which are introduced in the next chap-

ter. Here, main difficulties and modelling issues that make the forward mapping influence the

inverse problem are presented.

The estimated boundary potential is a nonlinear function of the conductivity estimate,

external geometry, and modelling of the electrodes. As a result of the nonlinearity, accurate

exterior shape and electrode position are essential for the forward model to fit the boundary

measurements. In fact, there is not a unique isotropic conductivity that satisfies the boundary

voltages without a perfect knowledge of those quantities [105].

When an accurate value for those figures is not available, there are ways around it. For

instance, it has been proved that one can reconstruct both the boundary shape and conductivity

from impedance boundary measurements [104]; a study checked its feasibility in a numerical

example [160]. The idea behind the last point is to include into the inverse problem those

parameters that cannot be accurately measured. Although this makes the reconstruction harder,

the converted problem has a higher chance of being solved. For example, one may recover

simultaneously the electrode contact impedance and interior conductivity [175], which has been

successful in tank experiments [69]. While, for EIT of brain function, contact impedance of the

skin-electrode interface has been pointed out as an important source of error [78] which varies

across subjects and time, it is not usually measured [74].

Introducing all uncertainties into the reconstruction is appealing; nevertheless, real appli-

cations must prove, first, the feasibility of their problem by providing the true values of the

electrode position, external geometry, and electrode contact impedance. A simulation study for

EIT of the head concluded errors in electrode position had more effect than electrode contact

impedance and conductivity estimate. Moreover, electrode positions can be accurately obtained

with a precision of a millimetre using photogrammetry [147]. An irregular and complicated ge-
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ometry, such as that of the human head, must be modelled accurately to achieve a good forward

solution - model. This has been done for a generic subject in EIT of brain function [11] where

an accurate model of the head was obtained from a structural imaging technique, like MRI or

CT [16, 170].

Another option is to compensate for the geometric mismodelling with anisotropy, which

has been accomplished in both OT and EIT [70, 96].

1.2.5.2 Inverse problem

Once there is a mathematical forward problem that predicts boundary voltages for given model

parameters, the inverse problem estimates some of those parameters, usually the conductivity,

from measured boundary voltages. In the following chapters I present the theory employed in

this thesis; below I introduce the nonlinearity of the problem and a few of the most popular

reconstruction algorithms, regularisation approaches, and uniqueness.

The recovery of interior conductivity from boundary measurements is a nonlinear problem

where boundary measurements are much more sensitive to external shape, electrode position,

and skin-electrode impedance than to internal conductivity. The nonlinearity has been explained

as a consequence of the fact that large changes in conductivity may provide small changes in

voltage since potential redistributions tend to be minimised; therefore, small perturbations in

voltage can lead to large errors in the reconstructed conductivity [74, Chapter 3].

Nonlinearity has influenced EIT to be divided into three approaches: static imaging, for

which one attempts to obtain the real conductivity values; difference imaging, for which a

change in conductivity is estimated from a change in boundary voltages; and multifrequency

imaging, for which one seeks conductivity changes across frequency instead of across time.

Difference imaging, using linear reconstruction algorithms has been preferred in most clin-

ical applications because it is less sensitive to errors than static imaging. The linear back-

projection algorithm, proposed by Barber and Brown as a linear version of the EIT problem and

explained with the Radon transform in [151], was proved to be unstable [18]. As a result, most

of the clinical applications have hitherto adopted a direct linear reconstruction of difference

data, for example, Truncated SVD, which can get rid of some of the consistent errors [13, 11],

and single-step reconstruction methods like Newton’s One Step Error Reconstructor (NOSER)

[80, 31] and the three-dimensional linearised reconstruction (ToDLeR) [22] were implemented

in the early years. Normalised data has been suggested for reduction of the influence of shape

and electrode position errors [74].

Static imaging aims to recover absolute conductivity and appears to be feasible if the

boundary voltages can be predicted with an error of0.1% [161], however, an accurate model
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of the electrodes and the boundary shape is also required [97]. In the last two decades, a large

number of reconstruction algorithms have been proposed; a review can be found in [8, 24, 106].

Solving an ill-posed problem can be done by regularising the solution by penalising high

frequency components; common approaches are Tikhonov and Total Variation (TV) regulari-

sation. The Tikhonov type is associated toL2 norms and is characterised by smoothing edges

on the image. The TV type corresponds toL1 norms and penalises variations while preserving

sharp profiles [38, 26, 176].

Theoretically, while the problem of recovering isotropic conductivity from boundary volt-

ages has an unique solution [92, 93, 165], recovering anisotropic conductivity is not unique

[93, 101]. Nevertheless, uniqueness for the anisotropic case can be recovered by providing a

priori information, which could be taken from another modality [104].

1.3 Thesis goals

In last two decades or so, the EIT algorithm community has developed a large number of meth-

ods to deal with the ill-posedness of the problem by using optimisation, priors, and statistical

methods; EIT applications have been successful because simplified approaches to the recon-

struction problem have been used and efforts have been made to focus on the forward modelling

and instrumentational issues.

This thesis is an attempt to incorporate those novel approaches into improving image re-

construction in EIT of brain function: implementation of optimisation algorithms, statistical

methods, improvement of the head model, and use of priors that could be a first stage towards

multimodality.

There were four main goals: to optimise linear reconstruction, improving SNR of raw data,

the recovery of a piecewise linear anisotropic conductivity tensor with known eigenvectors, and

to include anisotropy in a realistic forward model of the head. The objective of optimisation of

the linear inverse problem was to develop a method that could cope with the requirements of our

problem: handling large scale problems; model a realistic distribution of the data where diverse

variances and correlations could be modelled; and optimisation of regularisation up to the noise

level for each data set. Improvement of the SNR in the raw data prior to reconstruction was a

major goal since the skull shunts applied current and this reduces the signal that is measured

on the scalp just to the limit of being detectable. The last two goals, which modelled a con-

ductivity tensor in anisotropic media, were to verify numerically the feasibility of the recovery

of a piecewise linear anisotropic conductivity tensor with known eigenvectors; and to study the

influence of anisotropic tissue, such as the skull and white matter, on the boundary voltages and
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the reconstructed conductivity.

1.4 Thesis outline

General theory for the forward and inverse problem is covered in chapters 2 and 3. In chapter 4,

the goal was to summarise the most important methods for solving the linear inverse problem

with the intention of determining which one satisfies the requirements for linear EIT of brain

function to be used during the rest of the thesis. These include methods that deal with ill-

posedness for linear inverse problems, modelling the covariance of the noise, and computational

issues for large scale problems.

Chapters 5 and 6 are the results chapters for the method developed for optimising linear

EIT of brain function. These were tested in saline filled tanks and human neonatal data acquired

during visual stimulation. In chapter 5, the goal was to develop a methodology for selecting an

optimum regularisation parameter and modelling the covariance of the noise. In chapter 6, the

goal was to improve the SNR of the data and the reconstructed images by applying Principal

Component Analysis.

Chapter 7, 8, and 9 form the final major project of the thesis with the aim of analysing the

influence of anisotropy for EIT of the head. In chapter 7, a FEM forward solution for anisotropic

media was validated with an analytical solution for a cubical domain with a Dirichlet boundary

condition. In Chapter 8, the aim was to verify uniqueness for the recovery of a piecewise linear

conductivity tensor with known eigenvectors from the complete NtoD data, that is, all possible

boundary data, using a numerical approach; which is an important usable constraint for EIT of

medical applications. Chapter 9 is a feasibility study of anisotropy for EIT of the head. The

purpose of this was to study the influence on the forward and inverse problems of inclusion of

an anisotropic conductivity estimate in the model.

Chapter 10 presents conclusions of the thesis, a summary of findings, and suggestions for

further research.



Chapter 2

Forward problem theory

Reconstruction of the conductivity distribution inside an object requires, first, solution of the

forward problem. This means solution of the voltage in the whole domain, given a physical

model for the applied current injection and conductivity estimate, and then obtaining the bound-

ary voltages. Thus, the forward operatorF as defined in (1.1) maps the volume conductivity

x into the boundary voltagesd (section 1.1.1). The physical system is modelled by combining

Maxwell’s equations of electromagnetism, which for the quasi-static approximation leads to

the generalised Laplace’s equation, with a choice of some boundary conditions. The system

of equations can be solved analytically for simple geometries or numerically for geometrically

complicated objects where FEM formulation is the most widespread.

2.1 Physical model

In EIT, an electrical current is injected, generally, through a pair of boundary electrodes, and

the voltage is measured at a different pair. Thus, one requires both a good electrical model for

estimating the current flow in the object, which is solved by Maxwell’s equations, and a realistic

model of the electrodes, which can be approximated by the Complete Electrode Model (CEM).

2.1.1 Maxwell’s and the generalized Laplace’s equations

James Clerk Maxwell, a Scottish lord from the Victorian times, who was greatly amazed by the

revelation of the equivalence between light and electromagnetic waves, stated a set of equations

that solves all classical electromagnetic problems [46, 169]. Those are

∇ ·E =
ρ

ε0
(2.1a)

∇× E = −∂B

∂t
(2.1b)

∇ ·B = 0 (2.1c)

c2∇×B = − J

ε0
+

∂E

∂t
c2, (2.1d)
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whereE is the electrical field,B the magnetic field, both twice differentiable in the domainΩ;

J is the current density;ρ is the charge density; andε0 is the electrical permittivity in vacuum.

For pursuing the mathematical model for EIT, we take the divergence upon equation (2.1d),

that is, Faraday’s theorem with the displacement currentε0E introduced by Maxwell, which

relates the magnetic field with its sources: electrical current and fluctuating electrical fields.

Since the divergence of the rotational is zero, that is,∇ · (∇ × B) = 0, then (2.1d) leads by

using (2.1a) to the well known conservation charge law

∇ · J = −∂ρ

∂t
. (2.2)

The previous equation states that the flux across a closed surface is justified by a loss of

charge in the volume enclosed by the surface. Since there are not any electrical sources in the

interior and giving the total interior chargeQ and the charge densityρ related byρ =
∫
Ω Q,

then (2.2) becomes

∇ · J = 0. (2.3)

The presence of an electrical fieldE in a medium provides excitation and reorganisation

of charges that is quantified by the conductivityσ and permittivityε, which can be coupled by a

general admittivityγ asγ = σ + iωε. Thus, the admittivity is function of the frequency as well

as the position, that is,γ = γ(x,w). This induces a current densityJ that, under the assumption

that the medium has a linear response, is given byJ = γE. If the medium is anisotropic, then,

in general,γ is a 2-rank tensor form, which is represented in some coordinates by a 3-by-3

positive definite matrix (Section A.1.10)

γ =




γ11 γ12 γ13

γ12 γ22 γ23

γ13 γ23 γ33


 , (2.4)

such that the electrical field and current density may not be parallel in general since in presence

of an electrical field,γ induces a current density vector with ith-coordinateJi given by

Ji =
3∑

i=1

γijEj . (2.5)

Hence,γ maps electrical fieldsE onto current density vectorsJ , and since it is symmetric,

the transformation can be explained by the eigenvalue decomposition as a map of the unit

sphere onto an ellipsoid, whose semiaxes direction and length are given byσ eigenvectors and

eigenvalues, respectively (A.2.1). In an isotropic medium,γ can be treated as a scalar valueα,
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that is, a scalar multiplying the unit matrix

γ = α




1 0 0

0 1 0

0 0 1


 , (2.6)

where in this caseE andJ are always parallel.

EIT applications usually operate at low frequency assuming the quasi-static approxima-

tion, in which the imaginary part of the admittivity is neglected, that is, the response of the

material is instant and frequency independent, which yieldsJ = σE, where the conductivity is

in general the 2-rank tensor

σ =




σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 . (2.7)

It has been shown that, for harmonic electromagnetic fields at a fixed frequency, the previous

approximation is valid whenωµσx2 is negligible, whereµ is the magnetic permeability and

x is the length of the object [31]. Providing some numbers, for example,σ in the range0.1

to 0.01Ω−1m, ω in the range0.1 to 0.01KHz, andx = 0.2m, the previous figure is around

5 · 10−8, which shows the tiny contribution of the complex part of the admittivity at low fre-

quencies.

SubstitutingJ in (2.3) and using the relationE = −∇u, whereu is the electrical potential

in Ω, the mathematical model for EIT is given by the generalised Laplace’s equation

∇ · (σ∇u) = 0, (2.8)

where the conductivityσ is generally a 2-rank tensor.

2.1.2 Boundary conditions: the Complete Electrode Model

Several boundary conditions have been proposed to enhance the modelling of the electrodes

based on the continuum Neumann condition [31] that reads as

σ
∂u

∂ν
= J on ∂Ω, (2.9)

whereν is the outward normal to the surface. This was modified by the Gap Model that con-

sidered the current density to be zero where there are not electrodes and to be constant at the

electrodes. Because the known quantity is the current injected at each electrode rather than the

current density, the Gap Shunt proposed the total current to be constant at the lth-electrodeEl,

that is ∫

El

σ
∂u

∂ν
ds = Il. (2.10)
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Due to the high conductivity of the electrodes, a constraint was added to force the potential to

be constant on each electrode, that is,u = Vl, whereu is the potential solved by the forward

problem.

The Complete Electrode Model [135], used in this thesis, models the effect between the

electrode and the skin by adding the contact impedance. The CEM is given by the generalized

Laplace’s equation (2.8) together with

u + zlσ
∂u

∂ν
= Vl on∂Ω, (2.11)

∑
Il = 0 conservation of charge, (2.12)

∑
Vl = 0 ground selection, (2.13)

where (2.11) accounts for the contact impedance of the skin-electrode interfacezl; (2.12) forces

the total current, in and out, for each injection to sum zero; (2.13) provides uniqueness to the FP

by selecting a ground point (electrode). The CEM has been proved to have an unique solution

and to fit the experimental settings with less than0.1% error [161].

2.2 Methods for solving the forward problem

Solving the Forward Problem (FP) implies finding a solution,u, to the boundary value problem

given by the generalised Laplace’s equation with some boundary conditions. A straight forward

solution to this problem in the continuous case, called a classical solution, is required to be

sufficiently smooth: for the generalized Laplace’s equation (2.8), the solution must be twice

differentiable, that is,u ∈ C2. Also, the boundary must be Lipschitz continuous (A.2) for the

solution to exist and to be unique.

The previous conditions are too strong, being only valid for very simple geometries, for

which analytical solutions may be available; for general geometries, the classical problem can

be converted onto a less restrictive weak formulation.

To solve numerically the weak formulation the domain is discretised. Among all numerical

methods the most commonly used are Finite Differences (FD), for simple geometries; FEM, for

general geometries and non-homogeneous medium; and Boundary Element Method (BEM), for

homogeneous medium, being computationally less expensive than FEM though more difficult

to implement.

In the next section I look, first, at the possibility of converting the problem to a less re-

strictive one, by applying the weak formulation. Then the weak formulation is discretised by

partitioning the domain, which leads to a discrete linear system of equations. Some computa-

tional aspects regarding the implementation are crucial in practice and are seen here: generating
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the partition and solving the linear system for a large number of unknowns.

2.2.1 FEM formulation

For solving the problem numerically, the domain must be discretised in a finite number of sub-

domains, called finite elements. Then, the system of equations can be built up independently

for each finite element and then all pieces gathered together in a large sparse system matrix.

Before the discretisation, the strong smoothness condition that is required by the classical

problem must be loosened. Thus, a weak formulation to the generalized Laplace’s equation

relaxes the continuity requirements leading to a more general weak solution, which complies

also with non-smooth domains.

2.2.1.1 Weak formulation

If the domainΩ is non-smooth, then a smooth solution to the problem may not exist. Thus, the

problem must be converted onto a less restrictive one, so that the solution, hopefully, lies is a

more general subspace. Multiplying the generalized Laplace’s equation (2.8) by a set of test

functions,v, and integrating over the whole domainΩ,
∫

Ω
v∇ · (σ∇u) = 0. (2.14)

Then, applying the Divergence theorem

−
∫

Ω
v∇ · (σ∇u) =

∫

Ω
∇v · (σ∇u)−

∫

∂Ω
v(σ

∂u

∂ν
), (2.15)

whereν is the outer unit normal to the surface, the problem (2.14) becomes
∫

Ω
∇v · (σ∇u) =

∫

∂Ω
vσ

∂u

∂ν
, (2.16)

which is the weak formulation that corresponds to the generalized Laplace’s equation.

Now, by looking into the type of subspace of the weak solution and test function in (2.16),

one infers that the test functionv and its first derivatives∂v must be integrable, which defines

a Sobolev spaceH1 (sections A.1.5 and A.1.6); the same refers to the solutionu, that is,u ∈
H1(Ω).

It is easy to prove that the weak formulation (2.16) with Dirichlet boundary condition has

a unique solution and with Neumann boundary condition (2.9) has a unique solution up to a

constant, which in practice is solved by defining a ground point (2.13).

For the complete electrode model, the RHS of the weak equation (2.16) representing Neu-

mann boundary condition, is given in terms of the CEM (2.11) as

L∑

l=1

1
zl

∫

El

v(Vl − u), (2.17)
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whereEl symbolises the contribution of each electrode, being zero away from the electrodes.

Existence and uniqueness of the complete electrode model has been proved in [161], with pre-

dicted voltage errors of0.1%, which was less than with the previous models.

The total current (2.10) at the lth-electrodeEl is obtained by substituting the CEM bound-

ary condition (2.11)

Il =
∫

El

1
zl

(Vl − ul). (2.18)

2.2.1.2 Galerkin FEM

In FEM, the domain is partitioned in what is called a mesh: elements cover the whole domain

and do not intersect, and neighbouring vertices coincide [29]. For the discretisation, nodes are

labelled, and a set of basis functionsφ is defined for each node such that the i-th vectorφi

follows

φi =





1 on the nodei,

0 on the rest.
(2.19)

GivenN nodes, one can introduce a N-dimensional discrete subspaceS that belongs to the

Sobolev spaceH1, which is called conforming FE, such that the potential can be interpolated

as

u =
∑

j

ujφj , (2.20)

whereuj is a vector of scalar coefficients.

In the Galerkin FEM formulation,N equations are obtained by replacing the test function

v by all basis functionsφi, wherei = 1, . . . , N . Then, by substituting the test function and the

solution in terms of the basis functions, the LHS of the weak equation (2.16) becomes

N∑

i=1

uj

∫

Ω
∇φi · ∇(σφj). (2.21)

Combining the RHS and LHS, and reordering their terms, the weak equation becomes

N∑

j=1

uj

(∫

Ω
∇φi · ∇(σφj)

︸ ︷︷ ︸
(AM )ij

+
L∑

l=1

1
zl

∫

El

φiφj

︸ ︷︷ ︸
(AZ)ij

)
+

L∑

l=1

Vl

(
− 1

zl

∫

El

φi

︸ ︷︷ ︸
(AW )il

)
= 0, (2.22)

where the first term,AM , N ×N symmetric matrix, is the main part of the system matrix; the

second term,AZ , N × N matrix, corresponds to the Neumann boundary condition; and the

third term,AW , N × L matrix, constrains the electrode voltage toVl.

An advantage of FE is that one can write the conductivity distribution as an interpolation

of basis functionsϕk, that is

σ =
K∑

k=1

σkϕk, (2.23)
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which allows the system matrix to be computed for each element and then assembled together

at the end. Generally, the conductivity is chosen to be constant in each element, by makingϕk

one in the kth-element and zero elsewhere. This permits the conductivity to be taken outside

the integral of the main part of the system matrix,AM , as

(AM )ij =
K∑

k=1

σk

∫

Ωk

∇φi · ∇φj , (2.24)

where the integral can be computed off-site.

Substitutingu (2.20) onto the total current throughEl (2.18) becomes

Il = Vl
|El|
zl︸︷︷︸

(AD)ll

+
N∑

j=1

uj

(
− 1

zl

∫

El

φj

︸ ︷︷ ︸
(AW )lj

)
, (2.25)

where the first term,AD, L × L diagonal matrix, explains the CEM boundary condition, and

|El| is the area ofEl.

Combining the weak equation (2.22) with the current equation (2.25), the forward problem

is given by the linear system [75, Chapter 1]

 AM + AZ AW

AT
W AD





 u

V


 =


 0

I


 , (2.26)

whereu is the solution vector,u = (u1, . . . , uN )T ; V is the electrodes potential vector,V =

(V1, . . . , VL)T ; andI is the electrodes electrical current vector,I = (I1, . . . , IL)T . The linear

system (2.26), which can be written asAũ = Ĩ, is only for one current injection; several current

injections are solved simultaneously by adding as many columns toũ andĨ as the total number

of current injections, that is,

A[ũ1, . . . , ũG] = [Ĩ1, . . . , ĨG], (2.27)

whereG is the total number of current injections, and all columnsũ andĨ sum zero as given in

(2.12) (2.13).

2.2.2 Implementation and computation

Several decisions must be taken when implementing the numerical forward problem: the type

and size of the mesh, the method for solving the linear system, and the software used for gen-

erating the mesh and building up the system matrix.

2.2.2.1 Partition and mesh generator

Three possible choices that influence the accuracy of the approximated FE solution are the kind

of partition, the degree of the polynomial, and the density of the mesh.
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Regarding the type of partition, in 3D, tetrahedral finite elements are usually adopted since

it can fill the domain better for irregular boundaries; cubic is more regular; other polyhedrons

are also possible. Also, a combination of them is feasible, for example, cubes in the interior of

the domain and tetrahedra at the boundary.

The degree of the polynomials for the potential determines the order of the approximation.

In this work, linear tetrahedra,P1 approximation, were adopted for simplifying the computa-

tion. Cubes are described by bilinear basis functions,Q1 approximation, which approximate

better the potential than linear functions since they can model non-zero curvature by a cross

product term. Higher order polynomials, for example, the quadraticP2 approximation, provide

better accuracy though they are more difficult to integrate and computationally more expensive.

Another way to improve the accuracy of the forward solution is to increase the mesh den-

sity.

Considering the mesh generator, some free-software is available like Netgen [154], for

simple geometries, while more complicated geometries and non-homogenous domains require a

more advanced software. The meshes generated for this work were done by using the Integrated

Design Engineering Analysis Software (IDEAS) [170]. A realistic neonatal head shaped FEM

mesh was produced by segmenting the outer surface of a neonatal MRI scan and by meshing

using IDEAS. First, a Delaunay triangulation algorithm was applied on the surface and then

grown inwards with linear tetrahedral elements. Keeping elements to a similar size achieved a

high quality mesh [170].

2.2.2.2 Constructing the system matrix

The system matrixA in (2.26) was here computed by using the Three-Dimensional Electrical

Impedance and Diffuse Optical Reconstruction Software (EIDORS-3D), a toolkit that builds up

the system matrix for the CEM on linear tetrahedra with isotropic piecewise constant conduc-

tivity [140, 139]. A modified version of 3D-EIDORS for modelling anisotropic media has been

implemented by modification of the system matrix [1].

2.2.2.3 Solving the linear system

There are several methods to solve the linear symmetric positive definite system (2.26). Medical

applications give rise to thousands of unknowns, making linear solvers like Gaussian elimina-

tion impractical; therefore, iterative solvers are preferred [29]. Two flourishing methods have

been popular in the last decade: Preconditioned Conjugate Gradient (PCG) and multigrid, which

converge in less thann steps, wheren is the number of unknowns. They also permit parallel

computation where parallel multigrid has been applied for EEG of the human head [182]. In

this thesis both PCG and multigrid are applied.
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Figure 2.1: A resistor network in 2D were resistors are places at the finite element edges is

equivalent to the discrete finite element mesh for piecewise linear voltage and constant conduc-

tivity, such that the contribution from the element conductivity to the resistor conductance is

given byσ cotα whereσ is the element conductivity andα is the opposite angle. Both formu-

lations lead to the same system matrix. (Image taken from [75], thanks to Bill Lionheart at the

University of Manchester and David Holder at UCL).

The accuracy of the linear solution depends on the condition number of the system matrix,

which, for the CEM, can be ill-conditioned for tiny electrical impedance; if this is the case the

shunt model should be used instead. An advantage of iterative methods is that the solution can

be obtained more efficiently, in less number of steps, by reducing its accuracy to that of the

measurements.

2.2.3 Resistor network

The aim of the Resistor Network (RN) problem, [37, 35, 100], is to detect a failure in a resistor

by injecting current and measuring voltages at the external nodes of the network. Its FP is also

modelled by the generalized Laplace’s equation such that the finite element 2D EIT problem

with piecewise constant conductivity has a RN equivalent, but the opposite is not always true

[106]. Thus, placing resistors at the edges of the finite element mesh and defining the resistor

conductance in terms of the element conductivity, such that the contribution of an element

conductivityσ to the resistor conductance is given byσ cot(α) whereα is the angle opposite to

the edge (Figure 2.1), leads to the same system matrix. It can be generalised for the 3D case.
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2.3 Summary

Solving the forward problem implies modelling the physical system and obtaining the predicted

boundary voltages for a conductivity estimate. From Maxwell’s equations, at low frequency,

the quasi-static approximation yields the generalized Laplace’s equation, which models the

electrical voltage in the given domain. Boundary conditions, for the injected current and the

measured voltage, must account for the voltage drop because of the contact impedance of the

skin-electrode interface, which is modelled by the CEM with an error of less than0.1%. Al-

though some simple geometries have analytical solutions, for general irregular geometries one

must solve the forward problem numerically by using a discrete formulation. The FEM formu-

lation is well established within the EIT community and is easy to implement. It can be used for

general geometries, and can model anisotropic conductivities. The RN problem is equivalent

to the EIT problem for a finite element formulation with piecewise linear voltage and constant

conductivity.

In this thesis, MATLAB toolkit 3D-EIDORS was used to built up the system matrix for

the CEM for linear basis functions and piece-wise constant conductivity, for isotropic media

(Chapters 5 and 6); a modified version of 3D-EIDORS was used for anisotropic media (Chapters

7, 8, and 9). A realistic homogeneous neonatal head-shaped FEM mesh used was created by

using IDEAS. The linear system was solved by using both PCG and multigrid.
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Inverse problem theory

This chapter is an introduction to definitions, theoretical results, and methods that are needed

for analysing and solving inverse problems. Section 3.1 is dedicated to the conductivity inverse

problem, defining the inverse conductivity problem, the Dirichlet-to-Neumann (DtN) map,

most relevant uniqueness and stability results, specifically an explanation of non-uniqueness

for anisotropic conductivity and theoretical results of the recovery of uniqueness by redefining

the problem, and the Jacobian as the operator that contains the information of how sensitive the

voltages are with respect to the conductivity. Section 3.2 is dedicated to a review of the theory

for solving inverse problems: ill-posedness as given by Hadamard’s definition; regularisation as

a strategy for recovering numerical uniqueness by providing extra information; prior informa-

tion is justified by revealing the statistical approach equivalent to deterministic regularisation;

and optimisation as a numerical methodology for solving inverse problems that provides recipes

for both unconstrained and constrained optimisation.

3.1 The inverse conductivity problem

The aim of the inverse conductivity problem is to estimate the conductivity inside an object

from the current-to-voltage map (section 3.1.1). In practice, as it has been previously introduced

(section 1.1.1), the inverse conductivity problem can be described as a mappingF−1 (1.2) from

boundary voltagesd into volume conductivityx1, and is obtained as an approximated inverse

to the forward mappingF (1.2) that provides boundary voltages after solving the voltages in

all the domain for a given conductivity (2.26). Theoretical and numerical results for EIT can be

found in [24].

1While in chapter 2 the boundary voltage was indicated with the symbolV and the conductivity withσ, in this

chapter and in parts of the thesis dealing with inverse problem definitions, the boundary voltage (data) was indicated

with the symbold and the conductivity (solution) withx.
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3.1.1 The Dirichlet-to-Neumann map

In practice, one injects electrical current (Neumann data) and measures voltage (Dirichlet data)

at the boundary; therefore, all the information one possesses about the conductivity is given by

the current-to-voltage map, or its opposite, the voltage-to-current map known as the Dirichlet-

to-Neumann (DtN) map.

In 1980, Caldeŕon [81] proposed the inverse problem of determining under what condi-

tions the conductivityσ could be uniquely reconstructed from the DtN mapΛσ defined as

Λσ : u 7−→ σ∇u · ν, u ∈ ∂Ω, (3.1)

such that all the information for recoveringσ, by applying a voltage and measuring current, is

contained in the mappingΛσ, which depends in the conductivity.

Let Λσu|δΩ be the flux, an inner product involving the DtN map explains the generalised

Laplace’s weak formulation (2.16) by the bilinear functionSσ [118]

Sσ(u, v) =< v|δΩ, Λσu|δΩ >=
∫

δΩ
v|δΩσ∇u · ν =

∫

Ω
σ∇u · ∇v. (3.2)

Now, by assumingv = u, the inner product (3.2) is zero if and only if∇u = 0; hence, the kernel

of the DtN map,K(Λσ) (section A.1.9), is constant voltages [24]. In real applications, one uses

the Neumann-to-Dirichlet (NtD) map,(Λσ)−1 : H−1/2 7→ H1/2 (section A.1.5), because it is

easier and more accurate to measure a voltage (H1/2) than a current (H−1/2). It satisfies the

variational form

< I, (Λσ)−1I >=
∫

Ω

1
σ
|J |2, (3.3)

where the kernel of(Λσ)−1 is given by constant currents, that is, measured voltages are nonzero

when the applied currentI is not a constant function.

3.1.2 Uniqueness

A review of uniqueness and stability results for the recovery of coefficients of partial differen-

tial equations can be found in [83]; uniqueness results for EIT can be found in [24]. A brief

summary is given as follows.

3.1.2.1 Two dimensional domains

For the 2D case, which is a special case, global uniqueness has been proved for conductivities

in W 2
p (A.1.5), forp > 1, in a Lipschitz bounded domain [118].

3.1.2.2 Isotropic mediums

In the isotropic case, for dimensions larger or equal to three, uniqueness has been proved for

piecewise analytical conductivities from∂Ω ∈ C∞ [92, 93]. Global uniqueness has been
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proved for continuously differentiable conductivities inΩ̄, that is,σ ∈ C∞(Ω̄), whereΩ̄ is the

domain including the boundary [165].

3.1.3 Anisotropic mediums

In an anisotropic medium,Λσ determinesσ uniquely up to a diffeomorphismΨ : Ω̃ 7→ Ω (D.1)

that fixes the boundary,Ψ = I on∂Ω, that is,

x = Ψ(x̃) in Ω

x = x̃ on ∂Ω.

Thus, the anisotropic inverse conductivity problem is not unique, which can be explained by

the non-injectivity of the DtoN map [101]. However, it is possible to recover uniqueness by

constraining the solution [104].

3.1.3.1 Non-injectivity

Non-uniqueness can be explained by showing the non-injectivity ofΛσ, that is, there are two

different conductivity tensors related byΨ that satisfy the same boundary dataΛσ [174]. Given

the potentialsu(x) andv(x) and the conductivityσij(x) 2 in the domainΩ, the bilinear function

Sσ (3.2) in terms of the partial derivatives

Sσ(u, v) =
∫

Ω

(
∂v

∂xi

)
σij(x)

(
∂u

∂xj

)
dx1dx2dx3, (3.4)

and rewriting the partial derivatives after applying the diffeomorphismΨ in terms of the old

ones as (D.22)
∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
= Bj

i

∂

∂x̃j
, (3.5)

whereB = (Ψ′)−1 is the Jacobian inverse ofΨ, Sσ becomes
∫

Ω̃

(
Bl

i

∂ṽ

∂x̃l

)
σij(x)

(
Bk

j

∂ũ

∂x̃k

)
|B−1|dx̃1dx̃2dx̃3 = (3.6)

∫

Ω̃

∂ṽ

∂x̃l
σ̃lk(x̃)

∂ũ

∂x̃k
dx̃1dx̃2dx̃3 = Sσ̃(ũ, ṽ), (3.7)

where|B−1| measures the change in volume (D.16),ũ = ũ(x̃) andṽ = ṽ(x̃) are the potentials

evaluated iñΩ, andσ̃(x) is given by

σ̃(x̃) =
(

BσBT

|B|
)

(Ψ(x̃)) , (3.8)

which can be explained by the transformation rule for two rank tensors and a change of the

element volumeB−1 (D.28). Hence,

Sσ(u(x), v(x)) = Sσ̃(u(x̃), v(x̃)). (3.9)

2Only in this section and in the appendix D.1 a distinction between upper and lower indices is made to define

transformations of coordinates for two-rank tensors.
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Now, substituting the DtoN mapΛσ in the bilinear functionSσ (3.2),

Sσ(u(x), v(x)) =
∫

∂Ω
vν · σ∇u =

∫

∂Ω
vΛσu, (3.10)

then ∫

∂Ω
vΛσu =

∫

∂Ω̃
ṽΛσ̃ũ, (3.11)

and sinceΨ = I on∂Ω, andũ(x̃) = u(x) andṽ(x̃) = v(x), then

Λσ̃ = Λσ. (3.12)

As a consequence, the two conductivitiesσ andσ̃ yield the same DtoN map, that is, the same

boundary conditions. In fact, there are an infinite number ofσ̃ for an infinite number of diffeo-

morphismΨ that satisfy the same boundary conditions.

The non-injectivity can be verified numerically by comparing the boundary dataΛσu in

Ω with the boundary dataΛσ̃ũ in Ω̃, whereσ̃ (3.8) is given in terms of the Jacobian of the

diffeomorphismΨ′, which can be computed elementwise [1].

3.1.3.2 Recovery of uniqueness

A physical interpretation of the non-uniqueness (Appendix D.2) explains the uniqueness up

to a diffeomorphism as a theoretical choice such that the measured boundary voltages do not

depend on the selected reference system. An analogy of the conductivity with the metric in

Riemmanian manifolds explains the conductivity inverse problem as the problem of recovering

the metric in a manifold, which can be done in two steps, the first one provides the manifold

structure, and the second, which is non unique selects the coordinate system (Appendix D.2).

However, it is indicated that providing extra information that selects the diffeomorphism yields

a unique solution. Uniqueness holds under few constraints: recovery of one eigenvalue [92, 93],

where eigenvectors and two of the three eigenvalues are known; a multiple scalar to the tensor

[104], extended to a function [2, 48], where eigenvalue ratios and eigenvectors are known. Ac-

cordingly, providing uniqueness for an inverse problem can be understood as assuming stability

under certain constraints [83].

3.1.4 Incomplete data

Uniqueness results suppose that there is complete boundary data [81]. However, in practice

there is incomplete data, for which uniqueness is still open [83]. A possibility is to constrain

the problem so that the solution can be uniquely determined by incomplete data; for example,

to assume there are two mediums of known conductivity [81].
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3.1.5 Sensitivity matrix

The Sensitivity matrix, known as the Jacobian, is the sensitivity of the boundary voltages with

respect to the conductivity, that is, first derivatives or Jacobian of the forward operator (1.1).

At a first order approximation, it can be computed for each conductivity element as the integral

over the volume element of the product of the driven and the measurements fields

δVdm

δσk
= −

∫

Ωk

∇u(Id) · ∇u(Im), (3.13)

whereu(Id) is the voltage corresponding to the driven current, andu(Im) is the voltage for the

fictional measurement current [140]. RedefiningV as a vector for all current injections and all

measurements, such thatVi is the voltage for the ith-measurement accounting for both indices

d andm, the Jacobian (3.13) can be represented as the sensitivity of the ith-measurement to the

kth-element conductivity as

Jik =
∂Vi

∂σk
, (3.14)

which can be also computed by finite differences by calculating the voltage difference for a

perturbation in the conductivity (A.25).

Since the Jacobian corresponds to the first derivatives of the forward mapping, it contains

information about the ill-posedness of the problem. It is also used mainly in optimisation al-

gorithms for solving the inverse problem, since it appears in computation of the gradient of

the functional to be optimised. In conclusion, it is one of the most important tools because it

represents how sensitive the current-to-voltage map is to a change of conductivity, which is the

aim.

3.2 Solving the inverse problem

Given the forward operatorF (1.1), solving the inverse conductivity problem implies finding a

solution to the nonlinear system of equations

F (x)− d = 0, (3.15)

whered ∈ Rm×1 is a vector of measured boundary voltages, form boundary voltages,F (x) ∈
Rm×1 is a vector of predicted boundary voltages by the model, andx ∈ Rn×1 is a vector

of element conductivities, forn finite elements. In practise,m is few hundreds andn is few

thousands.

A characteristic of the inverse problem is the lack of a well defined inverseF−1 and high

sensitivity to measurement errors and modelling errors; therefore, an approximation to the in-

verse is needed.
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3.2.1 Ill-posedness

Given two Hilbert vector spaces (section A.1.6),H1 andH2, wherex ∈ H1 andd ∈ H2, and an

operatorF : H1 7−→ H2, such thatF (x) = d, Hadamard definedF to be well posed if [176]:

i) For all d, there isx, such thatF (x) = d. That is,H2 is in the range ofF .

ii) The solutionx is unique for eachd.

iii) The solution is stable with respect to perturbations on the data.

Thus, well-posedness implies that there is a well-defined inverseF−1 : H2 7−→ H1;

otherwise, if any of the three conditions does not hold,F is ill-posed.

3.2.2 Regularisation

Inverse problems are usually ill-posed; therefore, there is a necessity to transform the problem

to a well-posed one, which can be done by regularisation. Since there is not an exact solution to

the nonlinear system (3.15), one seeks an approximated solution by minimising some functional

‖F (x)− d‖2
A, (3.16)

in a givenA-norm (A.9), up to the noise level‖η‖2
A, whereη represents the noise. A possible

way to control the level of minimisation in (3.16) is by adding a regularisation termΨ(x) to the

previous functional, so that the new problem has unique solution; it becomes

min
x

1
2

{‖F (x)− d‖2
A + αΨ(x)

}
, (3.17)

whereα is the regularisation term that controls the amount of regularisation, such that whenα

increases, the optimisation routine would concentrate in minimisingΨ(x). The idea is that the

new problem becomes well-posed, having unique solution, when

K (Ψ(x)) ∩ K (‖F (x)− d‖2
A

)
= ∅, (3.18)

whereK represents the kernel (section A.1.9) and∅ the empty set.

The type of regularisation is selected in relation with some knowledge of the solution. The

standard is Tikhonov regularisation, which corresponds to aL2-norm, that is,

Ψ(x) = Ψ(‖x‖2), (3.19)

penalising solutions with large norm and yielding smooth solutions. Other common penalisa-

tion term is TV, which corresponds to aL1-norm, that is,

Ψ(x) = Ψ(|∇x|), (3.20)
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penalising high frequency components but allowing sharp profiles of the image [38, 26, 176].

The difficulty with TV in the deterministic approach is the non-differentiability of (3.20); nev-

ertheless, non-differentiable complex prior densities can be applied in the statistical framework

[85].

3.2.3 Statistical framework

The statistical approach where inverse problems are considered as statistical inference explains

the Least Squares (LS) solution as a Maximum Likelihood Estimate (MLE), regularisation as

prior information, and Tikhonov regularisation as the Maximum A Posteriori (MAP) estimate.

A statistical approach to EIT considers the boundary datad to be a function of the unknown

quantities conductivityx and noiseη as

d = F (x, η), (3.21)

and defines a joint probabilityP (d, x, η) (B.2) [85].

Assuming additive noise andx andη being independent, the model becomes

d = F (x) + η. (3.22)

A Bayesian approach computes the posterior probabilityP (x|d) (B.10) as

P (x|d) =
P (d|x)
P (d)

P (x), (3.23)

explaining the forward problem as the likelihood densityP (d|x) and regularisation as the prior

densityP (x).

An estimate of the conductivity can be then obtained by the MAP, that is, by maximising

(3.23), which implies an optimisation problem. Other possibility is to compute the conditional

expectation of (3.23), that is,E[x|d], which is an integration problem that can be solved by

Monte Carlo methods [85].

A linear approximation to the nonlinear problem (3.22) can be considered by assumingJ

to be the Jacobian ofF andx andd to be small changes in the solution and boundary voltages

respectively as described in (4.5).

Statistical inference can be easily determined by assuming the data to be a random variable

that follows a Gaussian distribution,d ∼ N (Jx, Cη), read asd follows a Gaussian distribution

of meanJx and covarianceCη (Appendix B.1.3). In this case, the likelihood is proportional to

exp
(
−1

2
(d− Jx)T C−1

η (d− Jx)
)

. (3.24)
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Taking then the conductivity as parameters, the MLE maximises (3.24)[176, Chapter 4], which

is equivalent to the minimisation of

min
x
{ΦMLE} = min

x

{
1
2
(d− Jx)T C−1

η (d− Jx)
}

, (3.25)

whose solution is given by

xMLE = J†d, (3.26)

whereJ† is the pseudo-inverse (section A.2.4). In fact, the problem (3.25) is equivalent to the

Generalised LS (GLS) problem (4.8).

Since (4.8) is unstable for ill-posed problems, the solution must be also considered a ran-

dom variable asx ∼ N (0, Cx). Therefore, a linear model in which the variablesx andd are

jointly distributed, the posterior probabilityP (x|d) (3.23) is proportional to

exp
(
−1

2
‖Jx− d‖2

C−1
η

)
exp

(
−1

2
‖x‖2

C−1
x

)
. (3.27)

The MAP estimate [176, Chapter 4] that maximises (3.27) is given by

xMAP = (JT C−1
η J + C−1

x )−1JT C−1
η d = CxJT (JCxJT + Cη)−1d, (3.28)

which agrees with Tikhonov regularisation, where the first version of (3.28) is ideal for underde-

termined systems since it inverts an×n matrix, and the second one is better for overdetermined

systems since it inverts am×m matrix withn À m.

3.2.4 Optimisation

Optimisation allows one to find the value of some unknown property of the system under study

that minimises (maximises) some objective functional. It is referred to as constrained optimisa-

tion when variables are restricted to certain values, and otherwise as unconstrained optimisation.

There are a large number of methods available ranked in terms of robustness, efficiency, and

accuracy.

Let f : Rn 7−→ R be the objective that is a function of the unknown variablex constrained

to a domainΩ, the optimisation problem is

min
x∈Ω

f(x). (3.29)

If f andΩ are convex (A.1), then (3.29) converges to a global minimiser [122] defined as

f(x∗) ≤ f(x) for all x. (3.30)

Since convexity is hardly satisfied, methods converge to a local minimiser defined as

f(x∗) ≤ f(x) for x in neighbourhood of x∗. (3.31)

Here, the focus is on unconstrained optimisation where optimality conditions impose re-

quirements to the local minimiser and objective function.
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3.2.4.1 Unconstrained optimality conditions

Optimality conditions are divided into necessary conditions, imposed to the local minimiser,

and sufficient conditions, imposed to the objective function; they can be found in [122].

First-order necessary conditions provide information about the first derivatives at the min-

imiser. Ifx∗ is a local minimiser (3.29) andf is continuously differentiable in a neighbourhood

of x∗, then

∇f(x∗) = 0. (3.32)

Second-order necessary conditions provide information about the second derivatives. Ifx∗

is a local minimiser and∇2x is locally continuous, then

∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite. (3.33)

Second-order sufficient conditions guarantee a local minimiser. If∇2f(x∗) is continuous

in a neighbourhood ofx∗, ∇f(x∗) = 0, and∇2f(x∗) is positive definite, thenx∗ is a local

minimiser off .

In fact, a continuous and twice differentiable function is convex in a convex do-

main if and only if its Hessian is positive semidefinite on the interior of the domain

(http://en.wikipedia.org/wiki/Convexfunction).

3.2.4.2 Unconstrained optimisation strategies

Unconstrained optimisation methods iteratively minimise the objective functionf , following

one of the two strategies line search or trust region. Here, I focus only on the line search where

Newton’s step is the most important [122].

At each stepk, line search selects a directionpk along which the solutionxk moves,

minimising the objectivef(xk+1) for the updated solution

xk+1 = xk + αkpk, (3.34)

whereα is the step length. Oncepk is determined,α is obtained by solving the problem

min
α>0

f(xk + αpk). (3.35)

Newton’s step is obtained by approximatingf(xk + pk) using second-order Taylor series,

that is,

f(xk + pk) ' f(xk) + pT
k∇f(xk) +

1
2
pT

k∇2f(xk)pk. (3.36)

Imposing condition (3.32) onto (3.36) yields Newton’s step

pk = −∇2f(xk)−1∇f(xk), (3.37)
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which is accurate when the difference between the model and the quadratic approximation

(3.36) is small.

Finding an optimumα is needed since an extremely large step may go far from the mini-

mum. This can be done by using Armijo’s condition

f(xk + αpk) ≤ f(xk) + cα∇fT
k pk, (3.38)

for which suficient decrease is considered by decreasing the objective function more than a

linear function. The constantc ∈ (0, 1) was chosen asc = 10−4.

In practice, the Hessian or second derivative is not available or it is computationally very

expensive; therefore, Quasi Newton’s methods approximate the Hessian using only first deriva-

tives. The Quasi-Newton method BFGS, applied in this thesis, has superlinear convergence,

robustness, and a cost ofO(n2). It was implemented as given in [122]

H0 = I, α = 1

while‖∇fk‖ > ε

pk = −H−1
k ∇fk

xk+1 = xk + αkpk using Armijo’s condition

sk = xk+1 − xk, yk = ∇fk+1 −∇fk, ρk = 1
yT

k sk

Hk+1 = (I− ρksky
T
k )Hk(I− ρksky

T
k ) + ρksks

T
k

end

(3.39)

where the Hessian was initialised asH0 = yT
k sk/(yT

k yk)I after computing the descent direction.

3.2.4.3 Reconstruction methods

Optimisation deals with the conditions and methods for minimising an objective function, how-

ever, it is common to divide the type of methods in linear and nonlinear and direct and iterative

[24, 106].

Linear inversion methods are divided into direct methods like TSVD and Tikhonov [176]

and iterative ones like Conjugate Gradients [71].

Nonlinear direct methods, such as the layer stripping algorithm, recovered the conductivity

in two steps: first, it estimated the conductivity in the boundary by assuming most of the current

did not penetrate deeply in the domain; second, it approximated nonlinearly the conductivity

in a thin layer near the domain. Then, it proceeded layer by layer. Although it was attractive

compared to computationally expensive iterative methods, it may become very unstable when

the inhomogeneity is near the boundary [162].

An overview of nonlinear iterative methods for inverse problems can be found in [8].

Because Newton-type methods compute second derivatives or Hessian (3.37), which is com-
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putationally expensive for large scale problems, Krylov-space methods avoid the necessity of

forming and inverting the Hessian [141, 155]: CG has been analysed in [9]; recently a Newton-

Krylov method has been applied to OT [155].

A shape reconstruction approach assumes regions of constant material properties and seeks

to recover regional boundaries from boundary data. Assuming the material coefficients are

known, recovering shape, size, and location of boundaries for several regions been done for

general elliptic partial differential equations [95]. The proposed method presented convergence

and stability problems when initial estimates were far from the target boundary, and a previous

recovery of the location and size of the different region was suggested. Recovery of region

boundaries using level set functions has been done in a two step-reconstruction: first, by ap-

proximating shape and location of boundaries, and second, by recovering the shape represented

by level set functions [40].

3.3 Summary

The aim of the inverse conductivity problem is to determine conductivity inside an object from

the DtN map. A uniqueness result has been proved for isotropic conductivity while anisotropic

conductivity cannot be uniquely recovered unless prior information is provided. Furthermore,

uniqueness from uncompleted data is still open. Information about the sensitivity of boundary

voltages with respect to the conductivity is given by the Jacobian, which can be computed as

the product of the driven and measurements fields for each element.

Solving inverse problems, which are usually ill-posed as given by Hadamard’s conditions,

implies applying some type of regularisation. Regularisation can be explained from the sta-

tistical framework where a common choice is to assume that the solution follows a Gaussian

distribution, which corresponds to Tikhonov regularisation. An inverse problem can be solved

by minimising the difference between the experimental and the predicted data where optimisa-

tion provides different recipes for both unconstrained and constrained solution. Reconstruction

methods can be divided into linear and nonlinear and direct and iterative. Linear direct methods

like TSVD and Tikhonov and nonlinear iterative methods like Newton’s type are related to this

thesis.
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The linear inverse problem

The linear inverse conductivity problem is ill-posed; therefore, regularisation is needed to con-

vert the problem to a better-posed one. There is a large variety of regularisation methods that

differ from each other in the assumptions about the type of distributions of the solution and the

data, and the numerical scheme used to find an approximate solution.

The usual statistical assumption is to consider the data and the solution to follow a Gaus-

sian distribution, whose inverse solution is given by the MAP estimator for which prior knowl-

edge can be easily included. Other types of regularisation adopt a different distribution. Reg-

ularisation methods can be computed using different schemes where some of them cannot be

implemented because they are computationally very expensive.

Truncated SVD has been previously used for linear EIT of brain function [11]. How-

ever, Tikhonov regularisation is more widely used in the inverse problem community since it is

equivalent to the MAP estimator and allows the inclusion of data and solution priors explicitly.

The goal of this chapter is to summarise the most important methods for solving the lin-

ear inverse problem and to decide which best satisfies the requirements of linear EIT of brain

function.

To achieve this goal, the first assumption is a linear model in which Gaussian additive

noise is assumed. An approximate solution to this model is given by the generalised least

square solution in the case of over-determined and well-posed problems; however, linear EIT

is ill-posed as given by Hadamard’s conditions. As a result, linear regularisation, which can

be explained as a linear filter, is required. Assuming EIT has white noise, TSVD and Phillips-

Tikhonov are discussed as linear filters. With the intention of modelling the covariance matrix

of the noise, generalised Tikhonov is adopted as the general formulation for the EIT problem.

Finally, one of the possible schemes to compute Generalised-Tikhonov regularisation that is not

computationally very expensive for solving large scale problems and modelling the covariance

matrix is selected. This scheme will be used for the following chapters.
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4.1 Review of Methods

4.1.1 Linear model

For small changes of conductivity, the relation between changes in conductivity and changes in

boundary voltages can be approximated by a linear mapping given by the Jacobian (3.14) of the

nonlinear forward mapping. The inverse of this mapping would then map a change in boundary

voltages onto a conductivity change, for which a measured reference voltage and estimated

conductivity reference are required.

Let F (x) be the model predicted voltages, or forward solution, for a given conductivity

distributionx; andF (xref) be the predicted reference voltage, for a reference conductivityxref.

For a small conductivity change∆x = x − x0 aroundx0, the predicted voltageF (x) can be

approximated around the predicted reference voltageF (x0) using Taylor’s expansion as

F (x) ' F (x0) + J(x0)∆x, (4.1)

where changes of order(∆x)2 are neglected, andJ(x0) is the Jacobian of the forward mapping

F atx0.

Now, by defining difference data as

d = F (x)− F (x0), (4.2)

the linear problem becomes

d = J∆x. (4.3)

For simplicity on the notation, from here onwards, unless mentioned explicitly,x represents a

conductivity change, that is,

x ← ∆x. (4.4)

For the additive noise in the nonlinear problem (3.22), the linear additive noise problem can

be similarly derived. Thus, letd ∈ Rm be a vector of the voltage changes andJ ∈ Rm×n be the

Jacobian of the mapping of conductivity changesx ∈ Rn into d. A linear relation of impedance

and conductivity, assuming Gaussian additive noiseη with mean zero and covarianceCη, that

is, η ∼ N (0, Cη) (B.1.3), is given by the linear system

d = Jx + η, (4.5)

whereCη allows variablesηi to have different variance and to be correlated. The noise vector

η can be understood as the transformation of a vectore ∼ N (0, I) by the Cholesky factor

B ∈ Rm×r of rankr, that is,

η = Be, (4.6)
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where the Cholesky factor is related to the covariance as

Cη = BBT . (4.7)

A simplified experimental paradigm for difference imaging comprises periods with and

without stimulation. LetV (t) be the absolute voltage acquired in timet, andVref be the refer-

ence voltage, averaged across the period without stimulation, the difference data is defined as

d(t) = V (t) − Vref. Thus, the datad comprises two different periods, the stimulation period,

which represents a voltage change, and the period without stimulation, also called baseline,

which is the fluctuations around the reference, that is, the noiseη.

4.1.2 Generalised least squares solution for well-posed problems

A solution to (4.5) cannot be found exactly since, in general, the data does not belong to the

range of the Jacobian, which will be explained in more detail in section 4.1.3. Thus, one must

look for an approximate solution that can be achieved by considering the problem

min
x
{ΦGLS} = min

x

{
1
2
||Jx− d||2

C−1
η

}
= min

x

{
1
2
(Jx− d)T C−1

η (Jx− d)
}

, (4.8)

whose minimiser is the Generalised Least Squares solution, existing for over-determined and

full-rank systems, that is,m ≥ n and rank(J) = n. It can be found by making zero the first

derivative of the functional (4.8) with respect tox, that is

JT C−1
η (Jx− d) = 0, (4.9)

thus the GLS solution is given by

xGLS = (JT C−1
η J)−1JT C−1

η d, (4.10)

which exists only whenJ−1 andC−1
η are well defined.

The GLS solution (4.10) can be also expressed in terms of the pseudo-inverse (section

A.2.4) if one multipliesJ by the Cholesky factorB (4.7) as

J̃ = B†J, (4.11)

whereB is assumed to be nonsingular andCη well-posed. Then the GLS solution is given by

xGLS = J̃†d. (4.12)

4.1.3 Ill-posedness for linear problems

In general bothJ andCη can be rank-deficient and even ill-conditioned. In addition, the system

(4.5) is usually under-determined as the discretisation of the solutionx becomes very large;



80 Chapter 4. The linear inverse problem

therefore, an approximated solution to (4.5) cannot be found by the GLS method (4.8). Be-

fore looking for an alternative solution to the linear system, Hadamard’s considerations of ill-

posedness are highlighted (section 3.2.1):

a) There is not an exact solution to the linear systemJx = d sinced may not belong

to R(J). In this case, the GLS problem (4.8) provides an approximate solution (4.10) for

overdetermined well-conditionedJ as long asd ∈ R(J)⊥.

b) In practice, the system of equations is highly under-determined,n >> m, and nu-

merically rank-deficient,r = rank(J) < m. Then, considering the pseudo-inverseJ† =

V diag(s−1
i )UT (A.21) to solve the LS problem, implies inverting allsi where

si ∼ 0 for all r < i ≤ m. (4.13)

Thus, the inversion of (4.13) must be somehow penalised.

c) The ill-conditioning ofJ makes small perturbations in the data provide very large errors

in the solution. In real applications where the data is noisy, the smallest singular values are

highly sensitive to noise and their inversion will amplify the errors.

These three conditions make the inverse problem ill-posed. To account for the three con-

ditions one must a) seek an approximate solution; b) convert the problem to a well-posed one,

that is, full-rank; and c) better conditioning.

4.1.4 Regularisation

Regularisation is needed to make the problem well-posed (section 3.2.2) by providing prior

information about the solution that constrains the previous set of possible solutions and leads to

a unique one (section 3.2.3).

Often regularising implies adding a penalisation to the GLS objective function where

Tikhonov regularisation (3.19) yields

min
x

1
2

{
‖Jx− d‖2

C−1
η

+ α‖x− x0‖2
C−1

x

}
, (4.14)

whereα is the regularisation term controlling the penalisation term.

4.1.4.1 Regularisation by filtering

Regularisation methods for a linear inverse problem can be always described as a linear filter

[61]. For example, the Truncated SVD solution, which can be derived from the SVD (section

A.2.2), is expressed as a filter as

xTSVD =
∑

s2
i≤α

1
si

(uT
i d)vi, (4.15)
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whereui andvi are the left and right singular vectors ofJ , respectively. It can be also given as

xTSVD = V ΛTSV DUT d, (4.16)

whereU andV are defined in section A.2.4 andΛTSV D corresponds to the low pass filter

ΛTSV D = diag(s−1
1 , . . . , s−1

w , 0, . . . , 0), (4.17)

for a truncation levelw such thatw ≤ r, wherer = rank(J).

Phillips-Tikhonov regularisation seeks a minimiser to

min
x
{ΦPhi-Tik} = min

x

1
2

{||Jx− d||22 + α||x||22
}

, (4.18)

which penalises large solution norms. A solution to (4.18) can be obtained by differentiating

ΦPhi-Tik with respect tox and making it equal to zero [94], that is,

∂ΦPhi-Tik

∂x
= JT Jx− JT d + αx = 0. (4.19)

Thus, a minimiser to (4.18) is given by

xPhi-Tik = (JT J + αI)−1JT d. (4.20)

The same result can be obtained from the nonlinear iterative Newton’s method, by converting

the updated solutionxk+1 = xk + pk to a direct approach byk = 0, x0 = 0 andx1 = p0,

wherep0 is Newton’s step (3.37) and the Hessian is given byH = JJT + α, and the gradient

by G = JT (Jx0 − dT ) + αx0. This yields the same solution (4.20).

By substitutingJ by its SVD, (4.20) is given in filter form as

xPhi-Tik =
m∑

i=1

si

s2
i + α

(uT
i d)vi, (4.21)

or in compact form as

xPhi-Tik = V ΛPhi-TikU
T d, (4.22)

where Phillips-Tikhonov’s filterΛPhi-Tik is given by

ΛPhi-Tik = diag(
si

s2
i + α

). (4.23)

While the TSVD filter (4.15) corresponds to a low-pass filter providing a jump function,

Phillips-Tikhonov’s filter (4.23) is smooth. Examples of other filters can be found in [62].

Anisotropic-smoothness filters have been studied in [27] .
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4.1.4.2 Generalised-Tikhonov regularisation

TSVD and Phillips-Tikhonov assume the covariance of the noise and solution to be the unit

matrix, yet the matched filtering theorem says that the smoothing should match the signal to

maximise the SNR [183]. Thus, spatial smoothing for neighbouring elements improves the

SNR when the smoothing of the filter matches the dimensions of the object to be detected [183].

Modelling the covariance matrix of the noise is essential if data variables have different variance

and are correlated, and it has been proved to decrease image error for EIT of experimental tank

data [69].

A more general model of the problem is Generalised-Tikhonov regularisation, which is

equivalent to the MAP estimator. Statistically, it assumes the solution and the data random

vectors are normally distributed, that is,x ∼ N(x0, Cx) andη ∼ N(0, Cη) [176]. Its seeks a

minimiser of

min
x
{ΦGen-Tik} = min

x

1
2

{
||Jx− d||2

C−1
η

+ α||x− x0||2C−1
x

}
, (4.24)

whose solution can be obtained as in (4.19) by differentiating as (4.24)

∂ΦGen-Tik

∂x
= 0. (4.25)

Thus, the solution to (4.24) is given by

xGen-Tik = [JT C−1
η J + αC−1

x ]−1JT C−1
η d, (4.26)

which is more suitable for overdetermined systems (JT J is a n-by-n matrix whereJ is a m-by-n

matrix) than the equivalent form for large scale problems

xMAP = CxJT (JCxJT + αCη)−1d, (4.27)

which is more suitable for underdetermined systems (JJT is a m-by-m matrix).

A deterministic approach, as in [139, 26], defines a differential operatorL, such that

LT L = C−1. Then, the problem (4.24) becomes

min
x
{ΦGen-Tik} = min

x

1
2

{∥∥Lη(Jx− d)||22 + α||Lx(x− x0)||22
}

, (4.28)

which can be solved by doing a Generalised SVD (GSVD) [56] or by minimising the equivalent

augmented system

min
x

1
2





∥∥∥

 LηJ
√

αLx


x−


 Lηd
√

αLxx0




∥∥∥
2



 (4.29)

= min
x

1
2

{∥∥J̃x− d̃
∥∥2

}
, (4.30)
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where nowJ̃ has a well defined inverse as long asK(LηJ) ∩ K(Lx) = ∅. If this is the case,

then the augmented system (4.29) has now full rank and can be solved using the pseudo-inverse

as

x = J̃†d̃. (4.31)

4.1.5 Modelling a general covariance matrix

So far, the reviewed methods assumed the covariance matrix of the noiseCη to have a well-

defined inverse. While most approaches have consideredCη = I, modelling data errors as

white noise, this is not the case for EIT data where data variables may have different variance

and be correlated [106, 69].

A first approximation to the data covariance is to allow the variance to differ for different

channels while neglecting correlations among channels, that is, assuming the covariance of the

noise to be a diagonal matrix

Cη = diag(σ2
1, . . . , σ

2
m), (4.32)

whereσ2
i is the variance of the ith-channel. The main advantage is thatC−1

η is well-defined

making the Generalised-Tikhonov solution (4.26) stable. Then, by substituting the Cholesky

factorB defined in (4.7) into (4.24), the problem can be computed as

min
x

1
2

{∥∥B†(Jx− d)
∥∥2

2
+ α

∥∥x− x0

∥∥2

C−1
x

}
, (4.33)

whereB† = diag(σ−1
1 , . . . , σ−1

m ). This is also known as whitening, with which the data space

becomes an equal variance domain, and it is a good approximation as long as the correlations

are small enough.

A more general covariance matrix would model error correlations in the data and would

allow its decorrelation; unfortunately, its implementation is non trivial sinceCη can be rank

deficient and even ill-conditioned. A generalised LS can be solved by applying the Gauss-

Markov linear model introduced by Paige [129], which can be computed as indicated in [130] or

by using GSVD [131]. Bjork [21] dealt with the case whenJ andCη are rank deficient. Hansen,

in [187], assumedJ to be ill-conditioned andCη well-conditioned, and he suggested a better

understanding was needed whenCη is ill-conditioned. They adopted Tikhonov regularisation

on the constrained LS problem on the form

min
u,x

{∥∥u
∥∥2

2
+ α

∥∥Lxx
∥∥2

2

}
subject to Jx + Bu = d, (4.34)

whereB ∈ Rm×p has rankp, such thatCη = BBT . Moreover, the case whenB is ill-

conditioned seemed to be unstable and not completely solved.
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The ill-posedness ofCη usually comes from the number of observationsq being much

smaller than the number of unknowns to estimate, which for a full covariance matrix is given

by [98]
1
2
m(m− 1). (4.35)

In practice, if the number of measurementsm is two hundred, then the number of unknowns

(4.35) required to produce a covariance estimate is twenty thousand; which would require over

eighty minutes of baseline if measurements are taken four times a second. In the case where

the number of observations is much smaller than the number of unknowns (4.35),Cη is ill-

conditioned.

An alternative to increase the baseline time can be to constrain the covariance matrix.

The easiest constraint is a diagonal matrix that neglects correlations between measurements.

However, it may be unrealistic when measurements are taking in parallel or acquisition time

is twice faster than possible correlations. An appealing method to constrain the covariance

is to use the concept of conditional independence from multivariate normal distributions [98].

This procedure assigns conditional independence for indirectly connected variablesdi anddj

by makingWij = 0, whereW = C−1 is known as the concentration matrix. Unfortunately,

defining conditional independence does not seem straightforward for EIT of the head, where

data variables correspond to measurements on pairs of electrodes far apart from each other.

Different approaches to tackle this issue can be found in [98, 32].

4.1.6 Regularisation parameter selection

Regularising is important, so errors in the model and the data are not amplified by the inversion;

however, excessive regularisation yields larger spatial regularisation than the target dimensions

losing vital information in the data. A collection of methods that guarantee convergence for

selecting an optimum regularisation parameter regularisation parameter is presented in [176,

Chapter 7]. The aim is to find a minimiserα to the solution error norm

||xα − xtrue||22, (4.36)

where obviously the solutionxtrue is only known in simulations. Instead of minimising (5.8)

some of those methods are based on minimising an approximation to the mean squared norm

of the predictive error
1
m
||Jxtrue− Jxα||2. (4.37)

Some of the selection methods require prior knowledge of the noise as the Discrepancy

Principle (DP) due to Morozov, which seeks a minimiser of the functional

ΦDP = ||Jxα − d||2 − ||η||2, (4.38)
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assuming white noisy and||η||2 < ||d||2. Its solution appears right at the L-curve ”corner” [60],

where for white noise,σ, can be estimated from a plot of the functionalϑ

ϑ =
||Jxα − d||22

trace(I − JRα)
, (4.39)

whereσ2 can be estimated as the plateau whenϑ is plotted againstα−1. It can be estimated

also from experimental data.

The Unbiased Predictive Risk Estimator (UPRE) is based on minimising (4.37). Assuming

white noisy a minimiser to (4.37) is proved to be close to the minimiser of the UPRE functional

ΦUPRE =
1
m
||xα − d||22 +

2σ2

m
trace(JRα)− σ2, (4.40)

whereRα is the regularisation operator defined as

x = Rαd. (4.41)

The Generalised Cross Validation (GCV) [177] does not need a priori knowledge of the

noise but it assumes white noise and the existence of a smooth solution. It aims to minimise

ΦGCV =
1
m ||Jxα − d||22

[ 1
m trace(I − JRα)]2

. (4.42)

The L-curve is based on a plot of the squared seminorm of the solution||Lxα||2 versus the

residual norm||Jxα− d||2. The idea is that a trade off between fitting the data and regularising

the solution provides a L-curve shaped graph where the ”corner” corresponds to the optimum

regularisation parameter. It was first suggested by Lawson and Hanson, in 1974, regarding LS

problems. Hansen proposed, after fitting a 2D-cubic spline, the point of maximum curvature for

selecting the point in the corner [63]; refer to [176, p. 107] for the computation of the L-curve

curvature.

Although, Hanke proved nonconvergence for the L-curve [58], Hansen [61] suggested

three conditions for a better distinguisiability of the ”corner”: i) Picard condition so that regu-

larised solution exists; ii) the noise follows a distributionN(0, σ2I), otherwise he suggested to

implement the general Gauss-Markov linear model for general covariance matrices, as in [187]

whereC is assumed to be a well conditioned general covariance matrix; iii)||η|| < ||d||, that

is, an optimum SNR.

Another method is the quasi-optimality criterion [61] which looks at changes of the regu-

larised solution. For TSVD, recent method based on the mean squared error (MSE) claimed to

provide better estimator in terms of the MSE and biases than the L-curve, which over-stabilised

the solution [184]. There are iterative methods that simultaneously converges to an optimum
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regularisation parameter and regularised solution, in few steps, avoiding these selection meth-

ods; for instance, a method proposed in image restoration converged to a unique solution as-

suming white noise [86], it is yet to be shown that it can be used in our area.

The existence of correlated errors in the data was showed to make the GCV fail [60], where

the GCV did not have a minimum or was too flat to be estimated while the L-curve gave good

results. It was explained that while the GCV is based on the residual norm, the L-curve does

take on account both the fitting of the data and the solution norm, and it identified correlated

errors which do not satisfy the discrete Picard condition.

4.1.7 Computing regularisation schemes for EIT of brain function

Optimising linear EIT of brain function requires a decision for a regularisation scheme that is

computationally cheap, for large scale problems, and stable enough, to model the general co-

variance matrix. Different methods to compute TSVD and Generalised Tikhonov regularisation

are compared below to achieve these goals.

A Generalised-Tikhonov approach (4.24), equivalent to the MAP estimator, implies mod-

elling the data covarianceCη, spatial covarianceCx, initial estimatex0, and, considering the

dimensions of the Jacobian, which are given by the number of measurements by the number

of conductivity elements. Regarding the size of the Jacobian, for example, a typical paradigm

comprises aroundm = 200 channels andn ∼ 4 · 104 conductivity unknowns. For evoked

potentials, the estimate of the conductivity change has been taken asx0 = 0 since no better

knowledge of the solution is available. For spatial regularisation, the covariance of the solution

has been assumed to be the unit matrix,Cx = I, that is, the solution variables have the same

variance and are uncorrelated.

For the size of the problem, the conventional Generalised-Tikhonov method as given in

(4.26) or (4.29) are computationally too expensive since they imply invertingn × n and(m +

n)× n matrices, respectively.

4.1.7.1 TSVD

TSVD has been previously applied to EIT of brain function avoiding the computation of the

SVD of J , which is too expensive. SinceJ = USV T , thenU is a matrix of eigenvectors of the

operatorJJT with a matrix of eigenvaluesS2, and

(JJT )U = US2, (4.43)

such that the Jacobian inverse can be obtained by invertingJJT of dimensionsm×m instead

of J of dimensionsm× n, that is.

J−1 = JT (JJT )−1. (4.44)
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Then, the idea is to compute the SVD ofJJT , JJT = Ū S̄V̄ T , and then to calculate its truncated

inverse as

xTSV D = JT V̄ ΛŪT d, (4.45)

whereΛ = diag(s̄−1
1 , . . . , s̄−1

w , 0, . . . , 0) is the truncated filter of truncation levelw singular

values. The idea is feasible because the ranges of the operatorsJ andJJT are both equal to

Ur.

However, computing the SVD ofJJT implies an inevitable loss of information in the

cross product. One can see that for a givenJ , the conditioning ofJJT increases, cond(JJT ) >

cond(J); consequently, then the eigenvalues ofJJT decay much faster than those ofJ .

A more direct method of computing TSVD avoiding the cross productJJT is to compute

the reduced SVD of J,J = Ũ S̃Ṽ T , whereU = [Ũ , Ũ⊥], Ũ ∈ Rm×r, V = [Ṽ , Ṽ ⊥], Ṽ ∈ Rn×r,

S̃ = diag(s−1
1 , . . . , s−1

r ), andr = rank(J). Then the TSVD solution can be obtained as

x = Ṽ ΛŨT d, (4.46)

whereΛ = S̃, such that,s−1
i = 0 for i > w. Thus, the previous equation is equivalent to the

low pass filter as defined in (4.15).

4.1.7.2 Generalised Tikhonov

The Generalised Tikhonov for under-determined and over-determined systems is given by the

MAP estimate (3.28) where the regularisation parameterα defined previously in (4.26) can be

absorbed by the covariance matrices.

Two realistic assumptions can be taken:x0 = 0, where the conductivity change has mean

zero; andCx = I, where elements inx are uncorrelated. Spatial regularisation consider-

ing neighbouring finite elements has been proved to increase the image SNR as given by the

matched filter theorem; however, in this work the aim is to model the effect ofCη. From here

onwards, the terminologyC = Cη is adopted. Thus, the problem (4.26) becomes

min
x
{Φ} = min

x

1
2

{||Jx− d||2C−1 + α||x||22
}

. (4.47)

The solution to (4.47) can be derived by

∂Φ
∂x

= 0, (4.48)

that is,

JT C−1(Jx− d) + αx = 0, (4.49)
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Table 4.1: Linear inverse problem approaches comparison in terms of modelling the covariance

of the solution,Cx, and the covariance of the noise,Cη, invertingCη, and feasibility for Large

Scale Problems (LSP).

approach eq. # Cx Cη avoidC−1
η LSP comments

GLS (4.10,4.12) ↓ ↑ ↓ ↓ no for IP

TSVD (4.16) ↓ ↓ – ↓ –

“ (4.45) ↓ ↓ – ↑ –

“ (4.46) ↓ ↓ – ↑ avoidsJJT

Phi-Tik (4.20) ↓ ↓ – ↓ –

“ (4.22) ↓ ↓ ↓ ↓ –

Gauss-Markov (4.34) ↑ ↑ ↑ – constrained method

Gen-Tik (4.26,4.29) ↑ ↑ ↓ ↓ MAP

“ (4.27) ↑ ↑ ↑ ↑ “

“ (4.51) ↓ ↑ ↑ ↑ “

then by re-ordering

JT C−1Jx− JT C−1d + αx =

Jx− d + CJ−T αx =

(J + αCJ−T )x− d =

(JJT + αC)J−T x− d = 0,

(4.50)

then a solution (4.47) is given by

x = JT (JJT + αC)−1d. (4.51)

Among all linear inversion approaches (Table 4.1) the solution (4.51), which is suitable for

large scale problems, models the covariance, and avoid the inversion of the covariance, will be

used, in this thesis, for linear EIT of brain function.

4.2 Summary

The aim of this chapter is to select a linear inversion method that can handle large scale problems

and can model the covariance of the data. Linear EIT is ill-posed; therefore, it needs regularisa-

tion. Linear regularisation can be explained as a linear filter where the most common ones are
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TSVD and Phillips-Tikhonov. While they assume the solution and the data to be standard nor-

mally distributed variables, in practice variables have different variance and are correlated. The

Generalised-Tikhonov problem models general normally distributed variables and agrees with

the MAP estimator. The most generally used version of Tikhonov for overdetermined systems

inverts the covariance of the data, which can be unstable when the number of observations is

not larger than (4.35), wherem is the number of measurements. From the different flavours of

the Generalised-Tikhonov solution, the one selected to be used in this thesis is the method for

underdetermined systems (4.51) that avoids the inversion of the covariance of the data.
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Selecting the regularisation parameter

5.1 Introduction

EIT is severely ill-posed, so it needs regularisation to find a unique solution. Insufficient regu-

larisation leads to images with artefacts, yet excessive regularisation yields excessively smooth

images. Thus, selecting the regularisation parameter is needed to obtain an optimum solution.

There are different methods (section 4.1.6) that converge to an optimum parameter under the

assumption that the noise of the data follows a standard normal distribution - white noise; how-

ever, EIT noise is not white as given by the Lilliefors or Jarque-Bera tests of normality.

So what happens when the noise is not white? A better approximation is to model a general

Gaussian distribution, which allows the data variables to have diverse variances and correlations

(section 4.1.5). Correlations may exist when measurements are acquired simultaneously or

at least twice as fast as the correlated signal, and can be modelled by a general covariance

matrix that allows de-correlation, also known as whitening. Unfortunately, whitening is non

trivial sinceCη can be rank-deficient and ill-conditioned; therefore, it cannot be inverted. A

generalised Least Squares (LS) problem, which accounts for a general covariance matrix, can

be solved by applying the Gauss-Markov linear method [129, 130], which can be computed

using the generalised SVD [131]. Although the cases whenJ andCη are rank deficient [21]

andJ is ill-conditioned whileCη is assumed to be well-conditioned [187] have been analysed,

in a general caseCη can be ill-conditioned. Other imaging techniques have included a weighted

LS approach, in [136, 6] for PET, or have iteratively predicted the covariance matrix, in [164]

for SPECT.

As the number of measurements,m, increases, the estimation ofCη becomes impracti-

cable since it requires as many observations as number of parameters (4.35) to be determined

[98]. Otherwise, an estimate from a low number of observations may be rank-deficient and ill-

posed if no constraint is imposed to it. There are several ways for constraining the covariance
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where the most explicit is applying conditional independence to variables that are not directly

dependent [98]. This is employed in Geophysics for spatial data where entries for the concen-

tration matrix,C−1
η , are set to zero for conditional independent variables that are, for example,

far apart. For EIT of the head, it is not obvious how to define conditional independence where

channel variables correspond to injection from two diametric positions. A simple constraint for

a low number of observations is to assumeCη to be diagonal.

Contemplating the possibility thatCη can be ill-conditioned, a method that is both easy to

implement and does not invert the covariance matrix is the MAP estimate for under-determined

systems (3.28), which agrees with the solution to the Generalised-Tikhonov problem (4.24).

Two realistic assumptions can be taken:x0 = 0, where the conductivity change has mean zero;

andCx = I, where elements inx are uncorrelated. Thus, under the two previous assumptions,

the solution to the problem (4.24) becomes (3.28).

Whatever the linearised filter is, one needs to select the filter truncation or its corresponding

regularisation parameter.

Previously, applications for EIT of brain function have chosen the truncation level by

means of localisation in phantom data [168] [11], and it has been recommended an objec-

tive way of finding an optimum truncation [11]. From a different perspective, although Hanke

proved nonconvergence for the L-curve [63], Hansen and O’Leary [61] suggested a distin-

guishable corner could be identified objectively for the L-curve, providing the noise followed

a standard normal distribution. Otherwise, he suggested a general Gauss-Markov linear model

for modelling a general covariance matrix of the noise; which was done in [187], whereC was

assumed to be well conditioned.

Standard methods are divided into two types: those that require prior knowledge of the

noise as the Discrepancy Principle, due to Morozov, and the Unbiased Predictive Risk Estima-

tor; others do not need a-priori information as the L-curve and Generalised Cross Validation

(section 4.1.6). Other standard methods as the quasi-optimality criterion can be found in [61].

For TSVD, a new method based on the mean squared error (MSE) claimed to provide better

estimator in terms of the MSE and biases than the L-curve, which (over)stabilised ill-posed

problems [184]. There are iterative methods applied in other applications, which simultane-

ously converge to an optimum regularisation parameter and regularised solution in a few steps:

in image restoration, assuming white noise [86]; in PET, based on iterative approximated com-

putations of the L-curve [88]. A comparison of several regularisation methods, for inverse

helioseismology and 2D deconvolution, gave the best results, in decreasing order, for the LC,

GCV, quasi-optimality, and DP [59]. Nevertheless, it was emphasized that those results were
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optimised for specific models, and are likely to differ for different inverse problems. Similarly,

it was suggested the comparison of selection methods for a specific application [176, Chapter

7].

As previously mentioned, one possible area of application for EIT is to image brain func-

tion. Impedance changes have been measured from scalp electrodes during adult motor and

visual stimulations [168]. However, localisation was not successfully achieved and SNR was

low due to the fact that brain impedance change is decreased between one or two orders of mag-

nitude because of the skull. This motivated EIT of brain function on neonates where although

the signal is smaller, the effect of the skull is smaller too [166] [114]. Neonatal skull is less

calcified and mainly formed by cartilaginous tissue. Using FMRI [5], it has been verified that

blood flow and volume changes in neonates during sensory stimulation.

There are two goals in this chapter: to establish the best choice for selecting the regularisa-

tion parameter for EIT of brain function, and to study whether modelling a general covariance

matrix instead of assuming white noise improves image quality.

Thus, I compared four methods LC, GCV, UPRE and DP; with and without modelling the

covariance matrix of the noise, in simulated, saline filled tank and human neonatal data during

a visual stimulus paradigm.

5.2 Methods

5.2.1 Model and forward solution

Obtaining a realistic neonatal head shaped FEM mesh was done by segmenting the outer surface

of a neonatal MRI scan and by meshing using IDEAS [170], which provided an accurate mesh

made of thirty-six thousands tetrahedra. A Delaunay triangulation algorithm was applied on the

surface and then linear tetrahedral elements were grown inwards, where keeping elements to a

similar size achieved a high quality mesh [170].

Previous studies in EIT have modelled the internal geometry for the adult head; however,

the neonatal skull is less calcified and mainly formed by cartilaginous tissue, which makes the

effect of the skull less important [166]. Thus, in this work, the neonatal mesh was considered

as homogeneous and so the same conductivity estimate was provided for the whole head. Since

the surface under the electrodes was essential for modelling the contact impedance, for this

mesh, electrodes were modelled by two surface elements (Figures 5.1(a) and 5.1(b)).

The forward solution was solved using a modified version of EIDORS-3D toolkit [140],

which modelling the CEM for first order tetrahedral finite elements, provided boundary voltages

and the Jacobian, given a conductivity estimate.
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(a) Neonate mesh (b) Neonate mesh with electrodes

Figure 5.1: A realistic neonatal head shaped FEM mesh created from a structural MRI of a

neonate; segmented and meshed using IDEAS. Thanks to A Tizzard, Middlesex University

5.2.2 Image reconstruction

The reconstruction strategy was done in two steps: normalisation of the Jacobian and inverse

reconstruction for a range of regularisation parameters. Jacobian row normalisation was needed

for reconstructing relative difference data. Details of row normalisation are given in appendix C.

The Jacobian, rescaled by the row normalisation matrixR, was inverted using the Generalised-

Tikhonov solution (4.51) for twenty logarithmically equally spaced parametersα, in the range

10−5 to 102, that corresponded to a truncation level of120 and1 singular values.

5.2.3 Computation of the selection methods functionals

The selection parameter functionals were modified from those given in (section 4.1.6), which

assumed noise to be additive and white, for which the covariance of the noise,C, is the unit ma-

trix. Nevertheless, in this work, noise vector elements were allowed to have different variance

and to have correlations, which can be modelled by a General Gaussian distribution. This is

equivalent to compute vector norms in the data space asC−1-norms (A.9), whereC is a general

covariance matrix of the noise of the data inverted by using the truncated pseudo-inverse.

Selection methods functionals were computed as follows. The GCV estimator minimised

ΦGCV =
1
m ||Jxα − d||2C−1

[ 1
m trace(I − JJ−1

α )]2
. (5.1)

The LC is based on a plot of the solution norm||xα|| versus the residual norm||Jxα −
d||C−1 . The idea is that a trade off between fitting the data and regularising the solution provides

a L-curve shaped graph whose corner corresponds to the optimum regularisation parameter.

First implemented for LS problems, the L-curve optimum corner can be obtained as the point

on the curve with maximum curvature, computed here as given in [176, Chapter 7].
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The DP estimator minimised

ΦDP = ||Jxα − d||C−1 − ||η||C−1 , (5.2)

where‖η‖C−1 is the norm of the noise vectorη.

The UPRE estimator minimised

ΦUPRE =
1
m
||Jxα − d||2C−1 +

2σ2

m
trace(JJ−1

α )− σ2, (5.3)

whereσ2 is the variance of the noise.

Estimates of the noise norm, for DP, and of the noise variance, for UPRE, are required. Let

η ∼ N (0, Cη) be the noise vector andσ2
i be the variance of the ith-measurement, the estimation

of the 2-norm‖η‖2 is related to the measurement variance as

E[‖η‖2] = E[η2
1 + . . . + η2

m] =
m∑

i=1

σ2
i . (5.4)

In the case of assuming white noise, for simulated data, whereη was known, the noise

norm was directly computed as||η||2 = η2
1 + . . . + η2

m; the noise variance was approximated

from the noise norm, using (5.4), as the mean of the measurement variance

σ2 =
1
m

m∑

i=1

σ2
i '

1
m
‖η‖2. (5.5)

For real data, firstly, the variance of the i-th measurementσ2
i was estimated from the baseline

period, and then the variance was approximated as the mean of the measurement variance; the

noise norm was estimated from the variance by using the previous relation (5.5).

In the case of modelling a general covariance, for simulated data, whereη was known, the

noise norm was directly computed as||η||2C−1 = ηT C−1η; the noise variance was approximated

from the noise norm, generalising (5.4), as in (5.5) by

σ2 =
1
m

m∑

i=1

σ2
i '

1
m
‖η‖2

C−1 . (5.6)

For real data, whereC was assumed to be diagonal, the noise norm‖η‖2
C−1 = ‖C−1/2η‖2 in

(5.6) can be approximated by

E
[‖η‖2

C−1

]
=

m∑

i=1

1
σ2

i

E
[
η2

i

]
= m, (5.7)

which shows the effect of whitening, where the variance estimate in (5.6) becomesσ2 ' 1, that

is, a white noise distribution.
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5.2.4 Comparison of methods

Comparison of methods was done in terms of the solution error norm, for simulated data, and

in terms of the SNR of the largest change in the image, for tank and neonatal data.

The solution error norm was computed as

||xα − xtrue||2, (5.8)

wherextrue was the simulated conductivity change andxα was the reconstructed conductivity

change for each regularisation parameter.

Image SNR was computed as the ratio between mean conductivity at Full Width at Half

Maximum (FWHM), xFWHM , and the standard deviation of the background conductivity,

σ(xbackground), that is,

SNRimage =
E[xFWHM ]− E[xbackground]

σ(xbackground)
. (5.9)

For the statistical comparison, ANalysis Of VAriance (ANOVA) and a multi-comparison

test were applied. Employed on the dependent variable, here the solution error norm for sim-

ulated data and the image SNR for tank or neonatal data, ANOVA revealed if there were sig-

nificant differences among the eight groups corresponding to the combination of the four pre-

dictors: the LC, GCV, DP, and UPRE; and the two type of covariance: a unit matrix, and

general matrix. ANOVA was used to compare means of the eight groups by analysis of group

of variances, for a set of observations assumed to be independent and normally distributed with

equal variance. The set of observations were twenty-five different noise vectors, for simulated

data; four locations of a Perspex inside a saline filled head-shaped tank, for tank data; and ten

different subjects, for neonatal data.

Because ANOVA tests for the null hypothesis that all means are equal, for compar-

ing any pair means, I applied a multicomparison test whose outcome was the group means

and the Standard Error (SE) or95% interval of confidence. The multicomparison function

was Tukey’s honestly significant difference criterion, ’multcompare’ function in MATLAB

(http://www.mathworks.com).

Some data was discarded before the statistical comparison following two criteria: selection

methods that did not converge for all data sets, and data sets that yielded images with artefacts.

5.2.5 Data sets

5.2.5.1 Simulated data

Simulated difference data was employed for testing methods in the ideal case where the only

difference between data and the model was additive noise. Difference data was the subtraction
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between the data corresponding to a local conductivity perturbation and the data corresponding

to homogeneous conductivity. A change in conductivity of1% was simulated in the Region of

Interest (RoI), here the visual cortex region, with radius14% of the neonatal head axial diam-

eter. The primary visual cortex, as FMRI predicts, has a volume in the range eight to fourteen

cubic centimetres [7], which roughly corresponds to a range between twelve and thirteen per-

cent of the axial diameter of the adult head. It is located in the occipital part of the brain cortex

at the height of the eyes.

Correlated noise was simulated by computing white noise and then by correlating it with a

covariance matrix, estimated from a neonatal data set. White noise was computed by changing

two parameters: five different states of the pseudo-random generator; and five different SNR

in the range20 to 2 dB, for each of the previous state. In total, there were 25 data sets. All

noise vectors were correlated by a general covariance matrix estimated from a specific neonatal

data set baseline of one thousand five hundreds points, where the number of parameters to be

estimated (4.35) was seventeen thousands, which yielded to an ill-posed covariance matrix.

Thus, given a covariance matrixC and a pseudo-random vectore, the correlated noise vectorη

(4.5), was simulated asη = Be, whereB, such thatC = cov(η) = BT B, was determined here

using the eigenvalue decomposition.

5.2.5.2 Tank data

Impedance measurements were acquired using the Mark 1b UCLH EIT system (Figure 5.2)

[185]. This was specially designed for taking head measurements and current applied complied

with safety standards. It comprised a head box, set of electrodes, base unit, and notebook. The

headbox containing the current source and multiplexer was connected by a 3m lead to the base

unit, which consisted of the power supply, measurement circuits, and 8-bit microprocessor. The

head box was attached to the tank by a set of 21 silver/silver chloride EEG electrodes, of1cm

diameter, whose positions were based on 10-20 EEG electrode location protocol [20].

A four-electrode measurement was used: two electrodes to inject an alternating current of

38.4KHz and two different ones to measure electrical impedance. Measurements, of tens of

millivolts, were amplified to a range of±5V , and then converted to a 12-bit digital signal by an

analogue to digital converter.

A new injection-measurement electrode protocol, consisting of 187 measurements [166],

had to be adapted, from the 31-electrode protocol previously used [15], for allocating a smaller

number of electrodes on a neonatal head.

Tank data comprised a Perspex rod placed at four different locations - at the front, back,

left, and right - inside a saline filled head-shaped tank. This produced an infinite local decrease
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in conductivity with respect to the saline background conductivity. A set of 187 impedance

measurements was taken four times a second for over two minutes. Four repetitions of the same

experiment were undertaken; an experiment paradigm consisted of ten seconds of baseline, ten

seconds of stimulus, and ten seconds of baseline.

Pre-processing was performed by data segmentation on experiment repetitions, drift cor-

rection, data normalisation, and removal of very noisy electrodes. Each data set, after having

been segmented into different experiment repetitions, was subtracted to a linear fit of the base-

line and represented as percentage change from the mean baseline. Measurements were elimi-

nated when their STD during the baseline exceeded the mean of the ten largest measurements

during the stimulus period. Experiment repetitions were removed when the mean STD of all

measurements during baseline was larger than1%.

Before the reconstruction, each data set was averaged across experiment repetitions, in or-

der to remove white noise, and then averaged across the stimulus period for obtaining consistent

changes. Consequently, the data for the reconstruction consisted of four data sets, where each

one was a vectord ∈ Rm with m electrode measurements corresponding to the normalised

impedance averaged across experiments and stimulus period.

A covariance matrix of the noise,C, was estimated and included into the reconstruction

algorithm (4.20), where noise was considered as the baseline data after averaging across exper-

iment repetitions to be consistent with the averaged data. Because after averaging across exper-

iments, the baseline had only one hundred points, less than the number of variables, a general

covariance matrix would have been rank-deficient and unreliable; therefore, for this case, the

covariance matrix was constrained to be a diagonal matrix, that is,C = diag(σ2
1, . . . , σ

2
m). This

accounted for measurements having different variance, but being uncorrelated.

5.2.5.3 Neonatal data

Visual stimulation was performed using a flash at8Hz, using LED goggles, as this gives higher

EEG potential than checkboard stimulation, and this frequency is optimum [166].

Continuous recording during twelve minutes allowed fifteen repetitions of the same ex-

periment, where an experiment consisted of a stimulus period of25s in between two baseline

periods of20s each. In comparison with tank data, a longer baseline was needed to enable more

time for the recovery from the stimulation.

For this study, I used 10 neonatal data sets, corresponding to 4 infants, who followed the

paradigm described above. EIT system, hardware, data pre-processing, and estimation of a

covariance matrix were done as in section 5.2.5.2.
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Figure 5.2: Mark 1b UCLH EIT system whose components are 1) headbox that contains the

current source and multiplexer; 2) base unit, consisted of the power supply, measurement cir-

cuits, and 8-bit microprocessor; 3) notebook; 4) connector box between the notebook card and

the UCLH system.

5.3 Results

First, for simulated data, I compared the solution error norm verifying that the selection methods

converged to the optimum solution, under the influence of white noise. Then, I carried out a

statistical comparison of the different methods for simulated, tank, and neonatal data.

5.3.1 Preliminaries

I present a specific simulation as an example of the selection methods functionals and norms of

the solution, residual, and solution error. This also verifies that the selection methods converged

to the optimum solution, under the influence of white noise.

Under the influence of100% white noise, the effect of regularisation is illustrated asα

is increased from1 · 10−8 to 1. For smallα, that is, little regularisation, the residual norm

took the smallest values since the model fitted best the data (Figure 5.3(b)). Nevertheless,

lack of regularisation implied the model was also fitting the noise, which yielded the largest

values of the solution norm, with the solution being amplified by high frequency components

(Figure 5.3(a)). On the contrary, for very largeα, the solution was excessively smooth, and the

model gave a poor fit to the data.

The four predictors were computed as an estimate of an optimum trade off between fit-

ting the noise and smoothing the solution. The LC, GCV, and UPRE agreed on the predic-

tion of the regularisation parameter that corresponded to37 singular values (Figures 5.3(d),

5.3(e) and 5.3(f)), similar to the DP that estimated a cut off of25 singular values (Figure 5.4(a)).

Note that the LC curvature had a local maximum (Figure 5.3(d)), which in other examples was

also global maximum misleading the solution. The solution error norm was minimised for
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Table 5.1: Means and standard error (SE) (p < 0.05) of the solution error norm, for simu-

lated data, reconstructed by the LC, DP, GCV and UPRE, with (trueC) and without (C = I)

providing the covariance used for simulating correlated noise.

method C = I trueC SE

LC 0.0898 0.0857 0.0001

GCV 0.0898 0.0858 0.0001

DP 0.0905 0.0859 0.0001

UPRE 0.0898 0.0874 0.0001

25 singular values (Figure 5.4(b)), which, in this particular case, agreed with the DP and was

closed to the LC, GCV, and UPRE prediction.

Consequently, the four selection methods successfully predicted an optimum regularisation

parameter, among the given twenty, in terms of minimising the solution error norm. In contrast,

since the optimum parameter depended on the amount of white noise, a fixed truncation level

would not yield an optimum solution.

5.3.2 Simulated data

From twenty five simulated data sets reconstructed with and without modelling the covariance,

results were reported by the solution error norm means and SE for the four predictors and for

the two covariance types (Table 5.1). Providing the covariance used for simulating the data (true

covariance) decreased the solution error norm significantly for all methods where the UPRE had

significantly larger error norm than the other three (2nd column in Table 5.1). Assuming white

noise, the DP had a larger error while no difference was found among the other three methods

(1st column in Table 5.1).

A qualitative comparison of the images for a particular simulated data set presented a

significant improvement when providing the true covariance matrix, however, no significant

differences among selection methods were found (Figure 5.5).

5.3.3 Tank data

From the four tank data sets, results were reported by image SNR means and SE for the two pre-

dictors, the DP and GCV, and the two covariance types, unit matrix and diagonal matrix (Table

5.2). Estimations with the DP and UPRE underestimated noise and failed to converge, lead-

ing to noisy images; therefore, they were discarded before the statistical comparison. Between

the LC and the GCV there were no significant differences, nor between estimating a diagonal
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Figure 5.3: Example of the different functionals for a simulation under the influence of100%

white noise.
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Figure 5.4: Example of the different functionals for a simulation under the influence of100%

white noise.

Figure 5.5: Sagittal view, through the middle of the neonatal head, of the simulated conductivity

change (first column) and the reconstructed conductivity images (rest of columns) from its

simulated scalp data under the influence of correlated noise. This is a single example out of the

25 corresponding to SNR of1.8dB. In the first row, I assumed white noise (C = I), and in the

second, I provided the covariance used for simulating correlated noise (true C).



102 Chapter 5. Selecting the regularisation parameter

Table 5.2: Means and standard error (SE) (p < 0.05) of the SNR of the largest change in the

reconstructed images of a Perspex in four positions inside a saline head-shaped tank. Images

were reconstructed by the two predictors the LC and GCV, where the UPRE and DP did not

converge, and with (diagonalC) and without (C = I) estimating a diagonal covariance of the

noise.

method C = I diagonalC SE

LC 11 10 2

GCV 10 9 2

Figure 5.6: Axial view of the reconstructed conductivity images of a Perspex in a saline head-

shaped tank positioned on the front (Column 1 and 2), right (Column 3 and 4), back (Column

5 and 6), and left (Column 7 and 8). In the first row, I assumed white noise (C = I), and in

the second, I estimated a diagonal covariance from the data. Data was reconstructed by the two

predictors the LC and GCV since the UPRE and DP did not converge.

covariance matrix and assuming white noise (Table 5.2).

A qualitative comparison of images indicated no differences whether or not modelling the

covariance, nor between the LC and the GCV (Figure 5.6). In fact, because the high SNR of

the data,20dB, no large variations were expected.

5.3.4 Neonatal data

From ten neonatal data sets, six that presented noisy images with a non-localised conductivity

change were rejected before the statistical comparison. Out of the remaining four data sets,

only one set presented the highest change in the RoI, the visual cortex (back of the head); for

the rest the dominant change was on the front (Figure 5.7). Results were reported as a statistical

comparison by image SNR means and SE for the four predictors and for the two covariance

types, unit matrix and diagonal matrix (Table 5.3).

No significant differences were found among methods for the four neonatal data sets be-



5.4. Discussion 103

Table 5.3: Means and standard error (SE) (p < 0.05) of the SNR of the largest change in the

reconstructed images of four neonatal data sets where the other six data sets were discarded

because images where very noise lacking of a localised change. Images were reconstructed by

the four predictors and with (diagonalC) and without (C = I) estimating a diagonal covariance

of the noise.

method C = I diagonalC SE

LC 3.4 3.4 0.7

GCV 3.1 2.7 0.7

DP 4.4 4.4 0.7

UPRE 3.9 4.2 0.7

cause of the high variability across neonatal data sets (Table 5.3). Nevertheless, a qualitative

comparison of images yielded specific differences among methods. The DP and UPRE pro-

vided excessively smooth images where modelling the covariance increased the image SNR

(Columns 3,4,7, and 8 in Figure 5.7). LC and the GCV with modelling the covariance were

best for the data set with a change in the RoI (Subject 2 in Figure 5.7), however, they con-

verged to a small regularisation parameter, yielding images with artefacts, for two data sets

(Columns 1,2,5, and 6 in Figure 5.7). Consequently, modelling the covariance consistently

improved image quality.

5.4 Discussion

For simulated data, including the true covariance matrix of the noise into the reconstruction sig-

nificantly decreased the solution error norm, compared to the white noise assumption. However,

for either of these methods, no one selection method was clearly better than others. On the other

hand, for tank data where the data SNR was very high, estimating a diagonal covariance did not

have a remarkable effect. For selection methods, the LC and GCV were equally the best, as the

DP and UPRE failed to converge. For real human neonatal data, there was no significant differ-

ence among any of the methods because of the variability across subjects. However, estimating

a diagonal covariance consistently increased image quality. Overall, therefore, modelling the

covariance of the noise improved image quality, but it was not possible to determine the best

selection method from human data, whereas from tank and simulated data the best methods

were the LC and GCV.

There are some limitations for generalising this study since the feasibility of optimising
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Figure 5.7: Sagittal view, throughout the middle of the neonatal head, of four neonatal data

sets (in rows) where the other six data sets were discarded because images where very noise,

lacking of a localised change. Columns correspond to the four predictors: the LC, GCV, DP,

and UPRE; and where, for the first four columns, I assumed white noise (C = I), and for the

last four, I estimated a diagonal covariance of the noise.

the solution of a linear ill-posed system by selecting the regularisation parameter relies on the

assumption that the only difference between the model prediction and the data can be explained

by a white noise distribution. Because of those limitations, I aimed to test the methods against

modelling errors, deviation from a white distribution, and real data, where other physiological

activity is present. First, for simulated data, I tested that all methods converged under the

appropriate assumptions, and coped with correlated noise. However, simulated correlated noise

may have been biased to a specific correlation matrix, which was estimated from a particular

neonatal data set. For the tank study, I analysed the effect of shape and electrodes position

errors, although it did not explained for inaccuracies of the different layers in the head and

anisotropy conductivity. The fact that the DP and UPRE did not converge, underestimating the

noise, may be caused by larger modelling errors than accounted for by a Gaussian distribution.

In relation to modelling the covariance of the noise, simulations presented the improve-

ment that can be achieved by modelling the covariance employed for correlating the noise.

Modelling a diagonal covariance matrix, for tank data, did not have a large influence, which

indicates that no large improvement can be made for high SNR data, and a wrong estimation

of the covariance may yield poorer results; for neonatal data, it increased the SNR in one data

set though no significant improvement was found over all data sets, what may be due to large

variations of some of the selection methods across the different subjects. For real data, the
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covariance was constrained to a diagonal matrix because a general covariance required larger

number of observations than those of the baseline, which could be solved by increasing the data

acquisition during the baseline period. In cases where this is impractical from the experimental

point of view, imposing more realistic constraints to the covariance matrix is possible and would

allow its estimation from a lower number of points [32] [98], but does not seem straightforward

for our application. Moreover, if considering a general covariance of the noise accounting for

correlations when measurements have not been acquired in parallel, one would account for

only those correlations twice slower than the sampling rate; in this work, measurements were

acquired four times a second.

Concerning physiological noise, the neonatal study showed that more than half of the data

sets presented excessively noisy images, and all but one data set had the largest changes outside

the RoI.

Other technical issues: a more efficient way of estimation of the LC curvature can be done

by fitting a 2D-cubic spline before its calculation [63].

Theoretically, selection methods converge under the assumption of white noise, as the only

source of error, and positive SNR, where the UPRE has the best convergence and the LC lacks

of convergence.

Others found the LC to be more robust to correlated errors than the GCV, while in this

work the GCV and LC showed no differences. It was found that the GCV did not converge for

correlated data [177]; similar results were found for a low number of data sets [87]. Moreover,

a comparison of several regularisation methods, for inverse helioseismology and 2D deconvo-

lution, gave best results, in decreasing order, for the LC, GCV, quasi-optimality, and DP [59];

where the performance of the DP agreed with our simulated study. Nevertheless, it was empha-

sized those results to be best for that specific models, yet likely to differ for different inverse

problems.

EIT of brain function has previously selected a fixed truncation level empirically. Objec-

tive selection using one of these methods is superior since the regularisation parameter was

optimised for each data set. This has been corroborated for simulated data where the solution

error norm was optimised by the four methods. Nevertheless, for tank and neonatal data, the

methods failed in a few cases, which suggests that a fixed truncation level could be chosen when

the applied selection method fails.

Although no large differences were found among selection methods, I prefer the GCV,

because it is simpler to implement than the LC and the latter lacks theoretical convergence

[58], and the DP and UPRE require an estimate of the noise, which could be more difficult to
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estimate in case of modelling errors or a low number of observations; a truncation level obtained

experimentally could be also used, in case the selection methods do not converge. Modelling a

general covariance of the noise significantly improved the solution for simulation studies while

modelling a diagonal covariance for neonatal data provided a small change and had not effect

for high SNR tank data.

Our recommendation for human scalp data in general, therefore is to use the GCV with

covariance modelling, and empirical truncation if this does not converge. However, this is

based on this limited testing for neonatal visual evoked responses and needs verification in

other situations of current interest, such as in epilepsy or adult evoked response EIT.
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Principal Component Analysis

6.1 Introduction

EIT data SNR during evoked responses has been reported in the range0.76 to 1.34 on adults

[168], and2 on neonates, where experiments were repeated between six and twelve times to

increase the SNR by averaging [166].

Principal Component Analysis (PCA), which yields the best linear predictor of the data

[32], can be used to reduce the dimensionality of the data set to a small number of Principal

Components (PCs), the eigenvectors of the covariance of the data, that are uncorrelated and

best preserve the variation in the data [84]. One can then represent the data by its first PCs

and neglect higher PCs, such that the first PCs best represent the data and the discarded PCs

correspond to noise.

How to select the right number of first PCs that best represents the data is not clear; one

approach is to assess the percentage of variation accounted for by the chosen number of PCs,

which is given by the Maximum Predictive Error [84].

Estimation of the covariance from a small number of data sets may yield an ill-posed

covariance matrix; unless some constraints are imposed (section 4.1.5).

PCA has been used to find a single evoked potential signal for EEG, and it was found

that using the covariance of the data (second moment) is rather more accurate than averaging

(first moment) since averaging looks only at the first moment and a Gaussian distribution is

completely determined by the first and the second moment [87].

The goal of this chapter was to apply PCA for improving the SNR on EIT data collected in

a saline head shaped tank with a Perspex rod as test object and visual evoked responses recorded

with scalp electrodes at 50 kHz in two neonates. Thus, I projected the data sets onto the first

PCs that had the most significant part of the signal and neglected higher order PCs. Data and

reconstructed images SNR of raw data and the selected first PCs were compared before and after
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reconstruction using Tikhonov-Phillips as the linear regularisation scheme and the Generalised

Cross Validation as the selection of the regularisation parameter.

6.2 Methods

6.2.1 Data sets

Data comprised recordings from saline head-shaped tank with a Perspex rod as target and two

data sets of visual stimulation in neonates. Only two of the neonatal data sets have been used in

this chapter because the localisation of the conductivity changes of the evoked responses was

unsuccessful (chapter 5); only one had a reasonable change in the occipital cortex. The data

acquisition and pre-processing has been described previously (chapter 5).

6.2.2 Analysis of the data correlations

For tank data, I computed the covariance matrices across time and channels and visualised them

as a 2D-plot to identify possible correlations. Also, I computed the covariance of a synthetic

pseudo-random data set to support the comparison. The goal was to find whether time or chan-

nel correlations were easy to identify.

Data comprised a set of187 scalp impedance measurements acquired four times a second

(Figure 6.6(a)). Letdi(tk) represent the data for the i-th channel at timetk, wherei = 1, . . . ,m

andk = 1, . . . , q, andm is the number of channels andq the number of time frames; then the

data can be represented asd ∈ Rm×q.

6.2.2.1 Time covariance

To study time correlations, the covariance matrixC ∈ Rq×q, whose entries cov(d(tk), d(tk′))

measured the correlation between the data at timetk and the data at timetk′ , was estimated as

Ckk′ = cov(d(tk), d(tk′)) =
1
m

m∑

i=1

[(di(tk)−E[d(tk)])T (di(tk′)−E[d(tk′)])], (6.1)

whereE[d(tk)] is the estimation across channels for the time frametk, that is,

E[d(tk)] =
1
m

m∑

i=1

di(tk). (6.2)

6.2.2.2 Channel covariance

To study channel correlations, the covariance matrix aC ∈ Rm×m, whose entries cov(di, dj)

measured the correlation between the ith-channel and the jth-channel, was estimated as

Cij = cov(di, dj) =
1
q

q∑

k=1

[(di(tk)−E[di])T (dj(tk)− E[dj ])], (6.3)
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whereE[di] is the estimation across time for the ith-channel, that is,

E[di] =
1
q

q∑

k=1

di(tk). (6.4)

6.2.3 Principal components

Having estimated the time covariance (6.1), I computed its eigenvectors, plotted the first six and

last three, and selected those that correlated with the stimulus paradigm assuming therefore the

initial and end time frames as prior knowledge. Then the data was projected onto the selected

eigenvectors yielding the selected PCs.

6.2.3.1 Computation of the eigenvectors of the covariance

Let C be the time covariance (6.1), its eigenvalue decomposition is given by

CP = PS, (6.5)

whereS = diag(s1, . . . , sq) is the matrix of eigenvalues ofC such that

s1 ≥ . . . ≥ sq, (6.6)

and columns ofP ∈ Rq×q are the eigenvectorsa of C, that is,

P = [a1, . . . , aq]. (6.7)

6.2.3.2 Computation of the principal components

Let d be the matrix of the data where rows are channels and columns time frames, then the i-th

channel can be represented as the row vector

di(t)T = (di(t1), . . . , di(tq))T , (6.8)

wherei = 1 . . . , m. Now, letek be the basis vector for the kth-time frame, the datadi(t) can

be expressed as a function of this basis as

di(t)T = (di(t)T e1)eT
1 + . . . + (di(t)T eq)eT

q . (6.9)

Defining a new basis, whose vectorsa are the eigenvectors (6.7), then in the new basis the data

is given by

di(t)T = (di(t)T a1)aT
1 + . . . + (di(t)T aq)aT

q . (6.10)

The approximation of the i-th channel data withr basis vectors, such thatr ¿ q, is

(di(t)T a1)aT
1 + . . . + (di(t)T ar)aT

r , (6.11)
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where ther terms in (6.11) are ther-first PCs, which maximise the linear prediction of the

original datadi by usingr terms [32, 84]. The rest of PCs were neglected, which implied

an inevitable loss of information; however, it agreed with our motivation of neglecting the

irrelevant part of the data. In addition, it has been shown that approximating the data by the first

PCs is appealing since the discarded PCs correspond to measurements with worse precision

[84].

After projecting the data onto ther-first PCs, the percentage of information remaining of

the original data, also called Maximum Predictive Error [32], which accounts for the eigenval-

ues (6.6) percentage weight of the selected PCs, was computed as

MPE = 100

∑r
j=1 sj∑q
i=1 si

. (6.12)

6.2.4 Image reconstruction

The reconstruction strategy was done by row normalising the Jacobian before the reconstruc-

tion, reconstructing the data for a range of regularisation parameters, and selecting the optimum

solution using the GCV criterion. Jacobian row normalisation was implemented as in appendix

C. The row normalised Jacobian was inverted using the Generalised-Tikhonov solution (4.51)

for twenty logarithmically equally spaced parametersα, in the range10−5 to 102, that corre-

sponded to a truncation level of120 and1 singular values. The optimum regularisation param-

eter was the minimiser of the GCV functional (5.1).

6.2.5 Comparison of results

I compared the raw datad and reconstructed imagesx SNR with and without projecting the

data onto the selected PCs.

6.2.5.1 Comparison of data SNR

I compared the raw and the projected data SNR computed in dB as

SNR = 20 log10

(
E

[∣∣E[di(tstim)]
∣∣

σ(di (tbase))

])
, (6.13)

whereE[di(tstim)] is estimation of the data across the stimulus period andσ(di (tbase)) is the

standard deviation during the baseline period, for the ith channel, wherei = 1, . . . , m andm is

the number of channels.

6.2.5.2 Comparison of images SNR

I compared the raw and the projected data SNR computed in dB as

SNR = 20 log10

(
E

[∣∣E[xi(tstim)]
∣∣

σ (xi(dbase))

])
, (6.14)



6.3. Results 111

time(frames)

tim
e(

fr
am

es
)

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

(a) Covariance matrix for time frames, four frames

a second

channels

ch
an

ne
ls

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

(b) Covariance matrix for 187 channels

Figure 6.1: a) Time covariance and b) channels covariance matrices, for a data set of perspex in

a saline head-shaped tank. a) Time correlations had a pattern that was easier to interpret than b)

channels correlations, suggesting a possible dimensionality reduction.

where E[xi(dstim)] is estimation of the reconstructed data across the stimulus period and

σ (xi(dbase)) is the standard deviation during the baseline period, for the ith finite element,

wherei = 1, . . . , n andn is the number finite elements.

6.3 Results

6.3.1 Analysis of data correlations

For tank data I computed the time and channel covariance matrices. The time covariance had

a high correlation during the stimulus period and low correlation during the baseline. On the

contrary, the channels covariance had a correlation pattern that was less clear to interpret (Fig-

ure 6.1). In comparison, the covariance of a synthetic data set made of pseudo-random numbers

of the same dimensions as tank data did not exhibit large off-diagonal elements, which demon-

strated that no pattern exists in the covariance for white noise only (Figure 6.2).

Although both time and channels were correlated, I preferred time correlations because

they were easier to identify by visualization than channel correlations. Thus, only time covari-

ance was considered for the rest of the study.

6.3.2 Principal components

I computed the time covariance matrix, its eigenvectors (6.7), the maximum predictive error

(6.12), and selected the eigenvectors that correlated with the stimulus period for tank and neona-

tal data.
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Figure 6.2: Time covariance matrix of a synthetic pseudo-random data set, of the same dimen-

sions as tank data. It did not contain large off-diagonal elements, which illustrate the lack of

correlation of random data in comparison with tank data.

6.3.2.1 Tank data

High correlations during the stimulus period and no correlations during the baseline were found

by visualising the time covariance (Figure 6.1(a)) where the first eigenvector had MPE (6.12)

of 98% and best represented the time response (Figure 6.3). From the second to the sixth

eigenvectors, weights were more than hundred times smaller, and signals did not correspond to

the expected square wave signal, and from the seventh upwards, eigenvectors corresponded to

high frequency signals. Thus, raw data (Figure 6.6(a)) was projected onto the first eigenvector

and the rest of eigenvectors were neglected; this led to use of the first PC (Figure 6.6(b)).

6.3.2.2 Neonatal data

For the first data set, a high correlation was found during the stimulus period, smaller during the

recovery, and negligible during the baseline (Figure 6.4(a)), as expected from the experimental

paradigm. While the first eigenvector best represented this time response where MPE was87%,

the second to the sixth eigenvectors represented signals that did not correspond to the experi-

mental paradigm. Thus, raw data (Figure 6.7(a)) was projected only onto the first eigenvector

and the rest of eigenvectors were neglected; this led to use of the first PC (Figure 6.7(b)).

For the second data set, a higher correlation was found during the stimulus and recovery

periods than during the baseline period, however, other correlations were found during the base-

line (Figure 6.5(a)). The first eigenvector corresponded to high frequency noise, and therefore

was discarded; the second eigenvector best correlated with the experimental paradigm (Fig-
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Figure 6.3: Eigenvectors of the covariance matrix across time for a data set of perspex in a saline

head-shaped tank. Axes are% change (y-axis) and time in seconds (x-axis). Eigenvectors of

the covariance matrix, from top to bottom and from left to right: 1st, 2nd, 3rd, 4th, 5th, 6th, 7th,

(m-1)th, mth. Their corresponding eigenvalues are57.9835, 0.5386, 0.1282, 0.1128, 0.0703,

0.0443, 0.03, 0.2 · 10−4, 0.1 · 10−4. The first PC had most of the weight (high eigenvalue) and

best represented the experimental paradigm.
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Figure 6.4: Neonatal data set 1 with SNR of around 10dB. a) Covariance matrix in time frames,

where there were four frames a second; and b) PCs of the covariance with corresponding eigen-

values1.5619, 0.0821, 0.0582, 0.0494, 0.0413, 0.0306, 0.0277, 0.0001, 0.0001. The first PC

had most of the weight (high eigenvalue) and best represented the experimental paradigm while

higher PCs represented other time courses that differ from it (red and blue correspond to high

and low correlation, respectively).

ure 6.5) and had MPE of23.8%. Thus, raw data (Figure 6.8(a)) was projected onto the second

eigenvector leading to the second PC (Figure 6.8(a)).

6.3.3 Data and image comparison

I compared the data and the reconstructed conductivity SNR of the raw data and its first PCs.

6.3.3.1 Data comparison

The SNR of the first PCs compared to the SNR of the raw data increased by25dB for tank data

and15 to 20dB for neonatal data (Table 6.1).

For tank data, the first PC had a significant reduction of the baseline noise (Figure 6.6(b))

compared with the raw data (Figure 6.6(a)); the first PC removed also other type of signals

during the stimulus period.

For the first neonatal data set, the first PC had a significant reduction of noise and a clearer

signal and recovery (Figure 6.7(b)) than the raw data (Figure 6.7(a).

For the second neonatal data set, the second PC reduced the noise and had a clear signal

during the stimulus and recovery periods (Figure 6.8(b)) compared with the raw data (Fig-

ure 6.8(a)) that was excessively noisy.
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Figure 6.5: Neonatal data set 2 with SNR of around -5dB. a) Covariance matrix in time frames,

where there were four frames a second; and b) PCs of the covariance with corresponding eigen-

values0.3131, 0.1163, 0.0260, 0.0194, 0.0141, 0.0119, 0.0088, 0.9 · 10−5,0.5 · 10−5. The first

PC had three times more weight (eigenvalue) than the second, however, it consisted of noise

only. On the other hand, the 2nd PC best represented the experimental paradigm, and higher

PCs corresponded to other time courses that differ from it (red and blue correspond to high and

low correlation, respectively).

6.3.3.2 Image comparison

The SNR of the reconstructed first PCs compared to the reconstructed data SNR increased by

35dB for tank data and15 to 20dB for neonatal data (Table 6.1).

For tank data, the first PC image SNR was higher but image quality did not improve sig-

nificantly compared to reconstructed images of the raw data (Figures 6.9).

For the first neonatal data set, the first PC images were less dominated by artefacts both

during the baseline and the stimulus periods compared to reconstructed images of the raw data

(Figures 6.10).

For the second neonatal data set, the second PC had less artefacts during the baseline

and higher SNR during the stimulus period compared to reconstructed images of the raw data

(Figures 6.11). In fact, since the PC SNR was higher, the optimum regularisation parameter

was smaller yielding an increase of SNR of the highest change in the image but with more

artefacts, during the stimulus. Reconstructing the second PC where the first PC corresponded

to high frequency noise had not only a significant improvement in image quality, but improved

the SNR and consistency of the localisation during the stimulus period.
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(b) Data projected onto 1st PC

Figure 6.6: Data set of impedance measurements, of perspex in a saline head-shaped tank, for all

187 channels, measured four times a second following a paradigm of twenty seconds stimulus

between two baselines of ten seconds each with no perspex on the tank. a) Raw data and b) data

projected onto the 1st PC, which best represented the experimental paradigm, neglecting higher

PCs.

0 10 20 30 40 50 60 70

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t(s)

%
 c

ha
ng

e

(a) Raw data
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(b) Data projected onto the 1st PC

Figure 6.7: Neonatal data set 1 with SNR of around 10dB. a) Raw data and b) data projected

onto the 1st PC, which best represented the experimental paradigm, neglecting higher PCs

(stimulus from 15 to 40s).
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(b) Data projected onto the 2nd PC

Figure 6.8: Neonatal data set 2 with SNR of around -5dB. a) Raw data and b) data projected onto

the 2nd PC, which best represented the experimental paradigm, neglecting other PCs (stimulus

from 15 to 40s).

Table 6.1: Datad and imagesx SNR, in decibels, before and after projecting the impedance

measurements data onto the first principal components (PC), for perspex in a saline head-shaped

tank and neonatal data during visual stimulation.

Data SNR(d) SNR(dPC) SNR(x) SNR(xPC)

Tank 16.24 39.53 5.62 39.53

Neonatal 1 0.33 18.86 -1.23 18.86

Neonatal 2 -5.32 11.32 -1.37 11.32

Figure 6.9: Sagittal view, through the middle of the head, of normalised reconstructed conduc-

tivity of perspex in a saline head-shaped tank where the stimulus was from 11 to 20s. Rows

correspond to with (2nd row) and without (1st row) projecting onto the 1st PC
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Figure 6.10: Sagittal view, through the middle of the head, of normalised reconstructed con-

ductivity, for neonatal data set 1 (stimulus from 15 to 40s). Rows correspond to with (2nd row)

and without (1st row) projecting onto the 1st PC

Figure 6.11: Sagittal view, through the middle of the head, of normalised reconstructed con-

ductivity, for neonatal data set 2 (stimulus from 15 to 40s). Data has been reconstructed with

Tikhonov and the GCV. First row are images corresponding to the raw data, where the trunca-

tion level was predicted to be 24 dof; second row are images corresponding to the data projected

onto the 2nd PC, where the truncation level was predicted to be 60 dof since the SNR is now

higher; and third row are images corresponding to the data projected onto the 2nd PC, recon-

structed with a truncation level of 24 dof.
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6.4 Discussion

The aim of this chapter was to improve the SNR of the data and reconstructed images by ap-

plying PCA and an optimum selection of the regularisation parameter for EIT of brain function

on a saline head-shaped tank with Perspex as target and two neonatal data sets during visual

stimulation paradigm.

Analysis of the covariance matrix in the saline tank data revealed high correlations in time

during the stimulus period while no correlations during the baseline. Although correlations in

channels existed, they were less obvious to identify; therefore, I computed only the PCs of the

time covariance, and selected the first PCs that had a time response that best correlated with the

stimulus paradigm.

The SNR of the first PCs compared to the SNR of the raw data increased by25dB for tank

data and15 to 20dB for neonatal data; the first or the second PC decreased the noise signif-

icantly and yielded signals with less baseline noise and clearer responses during the stimulus

and recovery periods. In both cases, an increase in conductivity was expected over the visual

cortex, and such changes were apparent both in the uncorrected and corrected images; however,

they were clearer in both cases after processing. There were also changes over the frontal lobes.

It is unclear whether these were artefactual or due to unexpected additional changes in blood

volume due to visual stimulation in the neonatal brain. The SNR of the reconstructed first PCs

compared to the SNR of the reconstructed data increased by35dB for tank data and15 to 20dB

for neonatal data. For neonatal data, improvement in image quality of the first or second PC

was significant, reducing artefacts during the baseline and increasing the SNR of the highest

change in the image. For tank data, for which the first PC represented the99% of the data, no

significant change in image quality was found.

In this work, I projected the data onto the first or second PC; as a consequence, I removed

not only high frequency noise, but any PC whose signal did not have the expected time response

paradigm, that is, baseline-stimulus-recovery-baseline. In general, one may project the data

onto the first PCs, neglecting only higher PCs and including other changes given by secondary

PCs. Nevertheless, selecting the second PC and neglecting other PCs, for one neonatal data

set, changed image characteristics and improved the localisation and consistency of the highest

change during the stimulus period, demonstrating the potential of imposing a priori knowledge

about the time response to the PCs of the data.

In one case, I preferred the second to the first PC because while the first one corresponded

to the largest variance of the data (the largest eigenvalue), it was high frequency noise that I

aimed to eliminate from the data.
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The methodology of this study aimed to impose the prior knowledge about the time re-

sponse using the clear pattern of the time covariance, however, other ways of applying PCA

are possible. I believe that using the channel covariance neglecting its last PCs would lead to

similar results to neglecting the last PCs of the time covariance.

In this work, repetitions of experiments were averaged for obtaining a single experiment

per subject. PCA has the potential for obtaining a single response instead of averaging; this

has been previously applied for detecting a single EEG evoked response signal [87]. While

averaging can be used for removing random noise, averaging several signals that are not random

may distort the signal one is looking for. Besides, PCA can be use for detecting outliers in the

data by looking at the last PCs of the data [84].

The advantages of this approach may be most clearly seen in the second neonatal data set

where the stimulus related change in the raw data is obscured by noise. It is therefore somewhat

surprising that the image quality is relatively good before the use of PCA. This is presumably

because the chosen PC had the most relevant information of the image and the neglected PCs

did not add relevant information. This raises the question as to whether the use of PCA on

the raw data adds value or is a duplication of the effect of regularisation used for discarding

uncorrelated noise in image reconstruction. In fact, it appears to add value, in that a larger

number of singular values could be used for image reconstruction, and the eventual images

contained less noise.

I have shown that analysing the time covariance matrix and its PCs provides a valuable

technique for identification of different time responses in EIT of brain function. Furthermore, I

demonstrated the feasibility of using time correlations to impose onto the PCs a priori knowl-

edge about the time experimental paradigm. Thus, selecting the PCs that corresponded to the

paradigm increased the SNR of the raw data and reconstructed images by at least fifteen deci-

bels in all data sets; it also improved image quality where the effect was most significant for

the noisiest neonatal data set and least significant for tank data. I therefore recommend re-

constructing the principal components of the data together with an optimum selection of the

regularisation parameter for linear EIT; besides, I also recommend to use PCA for obtaining

a single response instead of averaging several experiments. The purpose of this work was to

present the method and give some sample results. In future in my research group, we plan to

use this approach to pre-process clinical data and establish its validity on larger clinical data

sets.



Chapter 7

Validation of a finite element solution for an

anisotropic medium

7.1 Introduction

It is well known that human tissues like bone, muscle, and brain white matter are anisotropic,

and its modelling has been suggested for medical [54, 55] and geological [132] EIT; however,

most applications have hitherto neglected anisotropy. Avoiding correction for anisotropy of

both white matter and skull has been found to lead to errors of about10% on the EEG forward

solution and to be significantly relevant for inverse source localisation [182, 181], where the

white matter anisotropic conductivity tensor was estimated from DTMRI [66][172, Chapter 5].

It seems plausible that modelling anisotropy is necessary to obtain an accurate forward solution

for EIT of medical applications and that significant improvements in resulting image quality

may result.

In an isotropic medium, Laplace’s equation can be solved analytically for geometrically

regular objects, for Neumann’s boundary condition in a sphere using Green’s functions [89],

and for Dirichlet’s boundary condition in an infinite plane by separation of variables [179]. EIT

for geometrically complicated objects can be solved numerically using FEM with 3D-EIDORS

[140]. The author is not aware of any published analytical solution for an anisotropic medium.

A FEM solution that modified EIDORS to model anisotropic media has been presented [1].

An important concept when dealing with the conductivity tensor rather than with scalar

conductivity is that the voltageu(x) in the given domainΩ with conductivityσ(x) is equal to a

new voltagẽu(x̃) in the transformed domaiñΩ with a transformed conductivitỹσ(x̃), under a

diffeomorphismΨ, i.e. a smooth and invertible transformationΨ : Ω 7→ Ω̃, such that̃x = Ψ(x),

ũ(x̃) = u(Ψ−1(x̃)), andσ̃ is given by

σ̃(x̃) =
(

Ψ′σΨ′T

| det(Ψ′)|
)

(Ψ−1(x̃)), (7.1)
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whereΨ′ is the Jacobian of the diffeomorphismΨ defined asΨ′ = ∂x̃/∂x. This can be shown

by verifying thatSσ̃(ũ, ṽ) = Sσ(u, v) (3.9) holds for the above definition ofσ̃ 1.

The aim of this chapter is to expand and present a method for incorporation of anisotropy

into a FEM forward solution originally presented in [1] and to validate this empirically. The

convergence of the anisotropic FEM solution to an isotropic analytical solution was tested

by applying a diffeomorphic transformation to the isotropic domain that converted it into an

anisotropic one. The Dirichlet boundary value problem was assumed for simplicity where the

starting domain was a cube with isotropic conductivity, for which an analytical solution can

be obtained by separation of variables. Convergence was verified in two steps: first, by the

equivalence of the FEM isotropic and anisotropic solutions, and then by the convergence of the

isotropic FEM onto the analytical solution while increasing the mesh density. The results veri-

fied that the anisotropic FEM solution is accurate enough for modelling the forward problem in

an anisotropic medium, which can be employed to study the influence of modelling anisotropy

for EIT of the head, for which bone tissues like the skull and white matter are anisotropic.

7.2 Methods

7.2.1 Model

Let Ω be a homogeneous cubical domain of dimensions−1 ≤ x ≤ 1,−1 ≤ y ≤ 1, 0 ≤ z ≤ 2,

with isotropic conductivityσ = diag(1, 1, 1). In this case, the generalized Laplace’s equation

(2.8) becomes Laplace’s equation[∂xx + ∂yy + ∂zz] u(x, y, z) = 0. A Dirichlet boundary con-

dition is assumed where the voltage is zero on the upper and side planes of the cube and one in

the lower plane (Figure 7.1), that is,

u(±1, y, z) = 0 (7.2)

u(x,±1, z) = 0 (7.3)

u(x, y, 2) = 0 (7.4)

u(x, y, 0) = 1, |x| < 1, |y| < 1. (7.5)

1To remark that in this section the definition ofΨ i) is the inverse as the previous definition (3.4), and ii) does

not fix the boundary. In fact, fixing the boundary leads to the non-injectivity of the forward problem (3.12), for

anisotropic conductivity, and so this would also hold for that case; in this chapter, the emergence of anisotropy from

a transformation seemed to be more comprehensible by transforming the whole domain than by fixing the boundary.
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Figure 7.1: Imposed Dirichlet boundary condition: voltageu = 1 on the planez = 0 for

|x| < 1, |y| < 1 (grey), andu = 0 on the rest of the boundary (black), for the isotropic domain

(mesh of 98843 elements).

7.2.2 Analytical solution

An analytical solution to the Dirichlet’s value problem can be solved by separation of variables

[179]

u(x, y, z) = X(x)Y (y)Z(z). (7.6)

Thus, by substitutingu in Laplace’s equation for an isotropic medium and reordering

1
X

d2X

dx2
= − 1

Y

d2Y

dy2
− 1

Z

d2Z

dz2
= −r2, (7.7)

wherer is a constant. A solution toX(x) can be expressed on the form

X(x) = A cos(rx) + A′ sin(rx). (7.8)

Sinceu(±1, y, z) = 0 for all y andz, thenX(±1) = 0, leading toA′ = 0 andr = lπ/2, for

l = 1, 3, . . ., which is equivalent tor = (2µ + 1)π/2, for µ = 0, 1, . . .. Therefore, the solution

X(x) is the linear combination

X(x) =
∞∑

µ=0

Aµ cos
[
(2µ + 1)

πx

2

]
. (7.9)

Similarly for Y (y), by reordering (7.7) fory

1
Y

d2Y

dy2
= r2 − 1

Z

d2Z

dz2
= −s2, (7.10)
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and imposing boundary conditionsu(x,±1, z) = 0 for all x andz, thenY (±1) = 0, leads to

Y (y) =
∞∑

ν=0

Bν cos
[
(2ν + 1)

πy

2

]
. (7.11)

A solution toZ(z) is obtained by reordering (7.10) forz

1
Z

d2Z

dz2
= r2 + s2 = t2, (7.12)

whose solution is of the form

Z(z) = C exp(tz) + C ′ exp(−tz), (7.13)

wheret is given by

tµν =
π

2

√
(2µ + 1)2 + (2ν + 1)2. (7.14)

Applying the boundary conditionsu(x, y, 2) = 0 andu(x, y, 0) = 1 for all x andy leads to

Z(z) =
1

1− exp(−4tµν)
(exp(−tµνz)− exp(−tµν(4− z))) (7.15)

The solution to Laplace’s solution is written by combining the coefficientsAµ andBν with Dµν

as

u(x, y, z) =
∞∑

µ=0

∞∑

ν=0

Dµν cos
[
(2µ + 1)

πx

2

]
cos

[
(2ν + 1)

πy

2

]
(7.16)

1
1− exp(−4tµν)

(exp(−tµνz)− exp(−tµν(4− z))) . (7.17)

The coefficientsDµν can be determined from the boundary conditionu(x, y, 0) = 1,

u(x, y, 0) =
∞∑

µ=0

∞∑

ν=0

Dµν cos
[
(2µ + 1)

πx

2

]
cos

[
(2ν + 1)

πy

2

]
= 1. (7.18)

Finally, the potentialu is given by

u(x, y, z) =
∞∑

µ=0

∞∑

ν=0

16(−1)µ(−1)ν

π2(2µ + 1)(2ν + 1)
cos

[
(2µ + 1)

πx

2

]
cos

[
(2ν + 1)

πy

2

]

1
1− exp(−4tµν)

(exp(−tµνz)− exp(−tµν(4− z))) . (7.19)

7.2.3 Finite element solution

The weak formulation of the generalized Laplace’s equation with a Dirichlet’s boundary condi-

tion has zero current on the boundary, so the FEM formulation (8.1) becomes

∫

Ω
(∇φi)T σ∇u =

∑

j

uj

∫

Ω
(∇φi)T σ∇φj = 0, (7.20)
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which can be split into boundary∂Ω and interiorΩ \ ∂Ω vertices,

∑

j∈Ω\∂Ω

uj

∫

Ω
(∇φi)T σ∇φj = −

∑

j∈∂Ω

uj

∫

Ω
(∇φi)T σ∇φj . (7.21)

It was computed as

Au = 0, (7.22)

whereA is the system matrix, computed using a modified version of 3D-EIDORS that models

anisotropic objects without considering the electrode contact impedance [140, 1], andu is the

potential on all vertices. Thus, by dividing the system matrix in blocks for the interior and

exterior vertices

Au =


 A11 A12

A21 A22





 uΩ\∂Ω

u∂Ω


 . (7.23)

Sinceu∂Ω are the boundary conditions, the interior potential was solved as

A11uΩ\∂Ω = −A12u∂Ω. (7.24)

7.2.4 Convergence of the anisotropic FEM solution

7.2.4.1 Convergence of the analytical solution

For the computation of the analytical solution (7.19), one needs to select the maximum number

of terms used to approximate an infinite series, given byµν for the maximum number ofµ and

ν, which here isn. The convergence of the analytical solution was analysed by computing the

difference between the analytical voltage (7.19) and the imposed boundary condition (7.5), on

the planez = 0 for |x| < 1 and|y| < 1, for whichu = 1, as a function of the number of terms

n. The rest of boundary conditions (7.2,7.3,7.4), for whichu = 0, were clearly satisfied.

7.2.4.2 Comparison of isotropic and anisotropic FEM

The FEM solutionuiso(x) in the isotropic domainΩ with conductivity σ, as given by 3D-

EIDORS [140], was compared to the FEM solutionuani(x̃) in the transformed domaiñΩ with

conductivityσ̃(x̃) (7.1) by

eani
i = 100

|uiso
i (x)− uani

i (x̃)|
|uiso

i (x)| , for i = 1, . . . , nI (7.25)

wherenI is the number of interior vertices since in the FEM Dirichlet’s boundary value problem

the boundary potential is known (7.24).

A diffeomorphic transformationΨ was applied to the domainΩ by mapping the mesh

vertices onto a new mesh iñΩ. The same mesh was used for simplicity to test that 3D-EIDORS

[140], and the modified version that models anisotropic objects [1], provided the same results;
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they should agree as the mesh density is increased. Two nonlinear transformations of similar

form differing only in the strength, which was measured by computing the determinant of the

Jacobian of the transformation as a function of the domain,| det(Ψ′)| = |det(σ̃)|, were applied

as: 



x̃ = 1.2 exp(x) + 0.7y + 0.4z

ỹ = −0.2x + 1.5 exp(y) + 0.3z

z̃ = −0.3x− 0.2y + 1.2 exp(z)

(7.26)





x̃ = 13.8 exp(x) + 15.7y + 18.4z

ỹ = −0.2x + 23.5 exp(y) + 0.3z

z̃ = −0.3x− 0.2y + 9.2 exp(z)

(7.27)

The transformed conductivitỹσ was computed elementwise by using (7.1) whereΨ′ was

calculated as follows. Letw be a vector inΩ, its transformed vector̃w in Ω̃ is given by the push

forward or JacobianΨ′ as

w̃ = Ψ′w. (7.28)

In 3D, Ψ can be completely characterised by knowing the push forward of three independent

vectors. Letri = (xi, yi, zi)T be the coordinates of the four vertices of a tetrahedronΩk, for

i = 0, 1, 2, 3, then takingr0 as a reference,W = [r3 − r0, r2 − r0, r1 − r0] is a 3-by-3 matrix

whose columns are three independent vectors inΩk. Similarly,W̃ = [r̃3− r̃0, r̃2− r̃0, r̃1− r̃0] is

defined as a matrix whose columns are the transformed vectors inΩ̃k wherer̃i = (x̃i, ỹi, z̃i)T .

Thus,Ψ′ was computed elementwise as

Ψ́ = W̃W−1. (7.29)

7.2.4.3 Convergence of the FEM solution

Convergence of the FEM solution was studied by computing the discrepancy between the FEM

and analytical solutions while increasing the mesh density. Two metrics were used for the

comparison: the vertex relative error and the FEM error norm. Letu be the analytical solution

anduh the FEM solution, the percentage relative error was defined for each vertex as

ei = 100
∣∣∣ui − uh

i

ui

∣∣∣. (7.30)

The FEM error norm was approximated as

‖e‖Ω '
(

N∑

k=1

|e(k)|2Vk

) 1
2

, (7.31)
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Figure 7.2: Convergence of the analytical solution (7.19),u, to the imposed boundary condi-

tionsu(x, y, z) = 1, for z = 0, |x| < 1, |y| < 1 (7.5), versus the maximum number of terms

µ andν equal ton used to approximate the infinite series, where the three different curves

correspond to several points at the specified region of the boundary for a mesh of 384 elements.

whereN is the number of tetrahedra,Vk is the tetrahedral volume, ande(k) is the absolute error

of the kth-tetrahedralΩk computed as the vertex average

e(k) =
1
4

∑

i∈Ωk

|ui − uh
i |. (7.32)

Convergence was verified by studying the dependence of the FEM error on the element size

h, which was given by the largest edge in the mesh; this reflects how much the FEM error

decreased by consecutive refinement.

7.2.5 FEM mesh

The tetrahedral mesh for the FEM isotropic and anisotropic solutions comparison was generated

using NETGEN (384 elements) [154]. For the comparison of the FEM with the analytical

solution tetrahedral meshes of different mesh density were created by using Cubit (2001, Sandia

Corporation, http://cubit.sandia.gov/).

7.3 Results

7.3.1 Convergence of the analytical solution

The analytical solution converged slowly to the imposed Dirichlet condition (7.5), on the plane

z = 0 for |x| < 1 and|y| < 1, for whichu = 1, because of the voltage jump fromu = 1 to

u = 0 for |x| = 1 and|y| = 1 (Figure 7.2). The difference was less than0.01% for n = 1000,

which was used for the rest of the analysis.

7.3.2 Comparison between the FEM isotropic and anisotropic solutions

The FEM anisotropic solutionu(x̃) in the transformed domaiñΩ was verified to be equal (7.25),

up to floating point accuracy, to the isotropic FEM solutionu(x) in Ω. The relative error is of
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Table 7.1: FEM error norm%‖e‖Ω (7.31) by increasing the number of elementsN , which

yielded a relation‖e‖Ω ∝ hα (Figure 7.4), whereh is the element size; and the maximum

percentage relative vertex errormax |ei| (7.30).

N %max |ei| ‖e‖Ω h

495 35.69 0.0326 0.88

2985 24.01 0.0228 0.52

8025 34.93 0.0170 0.37

13747 29.88 0.0135 0.32

35864 28.13 0.0099 0.26

55863 33.92 0.0087 0.24

98843 25.78 0.0060 0.21

353616 35.09 0.0051 0.14

the order10−13% for the nonlinear transformation (7.26) where errors were larger for those

vertices for which the determinant of the Jacobian of the transformationdet(Ψ′) was larger

(Figure 7.3(b)). Increasing the strength of the transformation (7.27), giving an increase of

det(Ψ′) of several orders of magnitude (Figure 7.3(c)) with respect to the previous one (Figure

7.3(a)), led to a relative error of the order10−12% (Figure 7.3(d)).

7.3.3 Comparison of analytical and FEM solutions

The FEM error norm‖e‖Ω decreased proportionally to the element sizeh, as the number of

elements increased, following the relation‖e‖Ω ∝ hα, whereα was between0.22 and0.99

(Table 7.1). A linear fit led toα = 1.1 with r = 0.98 (Figure 7.4). The maximum percentage

relative error at each vertex did not decrease, as the mesh density increased (Table 7.1), which

may be due to the fact that the FEM solution cannot accurately model, for the given element

size, the boundary conditions at the lower plane of the cube, atz = 0, where there is voltage

jump from u = 1 to u = 0. However, the FEM error norm that measures the total error

decreased linearly.

7.4 Discussion

A method for an empirical validation of the FEM forward solution for the generalized Laplace’s

equation in an anisotropic medium has been presented. The convergence of the anisotropic FEM
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(a) Anisotropic domain given by the transforma-

tion (7.26)

(b) Relative voltage difference (7.25) for

the interior vertices

(c) Anisotropic domain given by the transforma-

tion (7.27)

(d) Relative voltage difference (7.25) for

the interior vertices

Figure 7.3: Percentage relative voltage differenceeani (7.25), for the interior vertices, where

vtx# is the number of interior vertices, between the FEM isotropic solutionu(x) in Ω for

σ = 1, and the anisotropic FEM solutionu(x̃) in the transformed domaiñΩ for σ̃(x̃) =

Ψ́σ(x)Ψ́T /|det(Ψ́)| (7.1) under two nonlinear transformations given by a-b) (7.26), and c-d)

(7.27), wheredet(Ψ́) is the determinant of the Jacobian of the transformation (dash line, which

was scaled as|det(Ψ́)|(max(eani)/max(| det(Ψ́)|)) to be plotted together with the relative

error).
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Figure 7.4: Loglog plot of the FEM error norm‖e‖Ω (7.31) versus the element sizeh (the same

as in table 7.1) and a linear fit‖e‖Ω ∝ h1.1 with correlation coefficientr = 0.98.

solution to an analytical solution was verified for the case of a homogeneous cube in terms of

the relative vertex error and the FEM error norm. The isotropic solution in the given domain

and the anisotropic solution in the transformed domain have been shown to be equivalent for a

nonlinear transformation. The FEM error norm decreased proportionally to the tetrahedral size.

On the contrary, the local relative vertex error did not decrease as the mesh density increased.

The goodness of the analytical solution was studied versus the number of basis functions in

x and y used to approximate the infinite series. The error to fit the imposed boundary conditions

was less than0.01% when more than one thousand terms were employed. Since the number of

terms in the series increases with the power of two of the number of basis functions, the ana-

lytical solution was approximated using one thousand basis functions. In addition, it presented

a slow convergence because the imposed boundary conditions atz = 0-plane had a voltage

jump from one, in the interior of the plane, to zero, at the edges. The error of the analytical

solution was significantly smaller than the error between the analytical and FEM solutions, so

the analytical solution was accurate enough for testing the FEM solution.

The extension to the EIT problem from these results, that is, considering Neumann’s

boundary conditions together with the electrode contact impedance, can be done since in EIT

formulation the conductivity tensor appears only in the main part of the system matrix, which

has been tested here.

The convergence of the anisotropic FEM solution to the analytical solution was studied

in two steps. First, the FEM solution in the isotropic domain was equal up to floating point

accuracy to the anisotropic FEM solution in the transformed domain under a nonlinear trans-

formation. Because the difference was larger for the more distorted elements and by increasing
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the magnitude of the transformation, such that the determinant of the first derivatives of the

transformation increased by several orders of magnitude, then the difference can be explained

by the floating operations. Second, the FEM solution converged to the analytical solution with

FEM error decreasing proportionally to the element size. However, the vertex error did not

decrease accordingly, which could be due to the difficulty of the FEM solution to model the

boundary conditions for the considered element sizes. From the decrease of the FEM error, it

was concluded that the FEM solution converged to the analytical solution.

The results verified that the anisotropic FEM solution is accurate enough for modelling the

forward problem in an anisotropic medium, which can be employed to study the influence of

modelling anisotropy for EIT of the head, for which bone tissues like the skull and white matter

are anisotropic.



Chapter 8

Recovery of the anisotropic conductivity

tensor with known eigenvectors

8.1 Introduction

In this chapter, the interest is in the recovery of the anisotropic conductivity tensor in 3D. As it

has been introduced earlier for an isotropic medium, the conductivity tensor can be represented

as a scalar function multiplying the unit matrix (2.6). For the anisotropic case, it is represented

by a 3-by-3 positive definite symmetric matrix with six independent values (2.7). Most im-

portant uniqueness results have been presented earlier (Section D.4.5). In brief, in an isotropic

medium, with a known boundary and complete boundary data, one can uniquely recover a scalar

conductivity [92, 93, 165]. However, in an anisotropic medium, the conductivity tensor has dif-

ferent representations in different coordinate systems. Therefore, given the boundary data, the

conductivity tensor is uniquely defined only up to a diffeomorphic transformation (Appendix

D.2); fixing the boundary selects one from an infinite number of possible diffeomorphisms

[101]. Thus, while in the isotropic case there is one degree of freedom, which is uniquely de-

fined by the boundary data, in the anisotropic case there are six degrees of freedom, for which

it is necessary to select the diffeomorphism that fixes the coordinate system to uniquely define

the conductivity tensor (Section D.4.5 and Appendix D.2).

Furthermore, uniqueness can be obtained by imposing a constraint onto the anisotropic

conductivity tensor that determines the diffeomorphism. Uniqueness holds under these con-

straints: recovery of one eigenvalue [92, 93], that is, when eigenvectors and two eigenvalues

are known and one aims to recover an unknown eigenvalue; multiple scalar to the tensor when

eigenvectors and eigenvalue ratios are known and one aims to recover a multiple scalar [104];

and multiple function to the tensor [2, 48]. It has been suggested that providing information

about eigenvectors, which, for example, in medical applications could be obtained from a struc-

tural imaging modality, and eigenvalues, could uniquely define the conductivity tensor [104]. In
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addition, the existence of local orthogonal coordinates on 3D Riemaniann manifolds (Appendix

D.1) provides a natural coordinate system for which the metric is diagonal in all points of the

manifold [36], and so the metric can be diagonalised by providing the right local coordinate

system.

The finite element formulation for piecewise linear voltage and constant conductivity of

the EIT forward problem is equivalent to the resistor network problem (Section 2.2.3), for which

the conductance for resistors placed on the mesh edges can be expressed in terms of the element

conductivity; in this case, the number of degrees of freedom in the forward problem is given

by the number of edges that connect every two nodes, the node connectivity [106, 37, 35, 100].

A numerical study of the non-uniqueness for the finite element case suggested that fixing the

mesh selected an arbitrary local coordinate system, fixing the extra degrees of freedom, which

would lead to a unique meaningless solution in a fixed mesh; yet fixing the mesh did not fix the

six degrees of freedom per element, which may have been due to the fact that, even for a fixed

mesh, the mesh structure contains information that is not arbitrary, and so it may not specify all

the information; it was found that one could recover between one and three times the number

of elements [1].

An important usable constraint for EIT of medical applications is when the eigenvectors

are known. The anisotropic structure of tissues like muscle, bone, and brain white matter can

be approximated from a structural imaging modality or estimated directly from DT-MRI [172].

The eigenvalues, which are the conductivity along three orthogonal directions, are still un-

known. Nonetheless, there is, to my knowledge, no theoretical proof of the uniqueness for this

constraint.

The purpose of this chapter was to verify uniqueness for the recovery of a piecewise linear

conductivity tensor with known eigenvectors from the complete NtoD data, that is, all possible

boundary data, using a numerical approach. This was done in two steps, first, by studying the

rank of the Jacobian, from which one could infer that the constrained problem is well condi-

tioned, and second, by testing the convergence of the constrained inverse problem for several

conductivity distribution simulations. The rank of the Jacobian for both linear conductivity

and constant conductivity was computed; for linear conductivity, to verify that the Jacobian

of the proposed constraint was well conditioned; for constant conductivity, to verify that the

rank of the Jacobian for the discrete case is given by the number of edges in the finite ele-

ment mesh. The linear conductivity tensor was nodal based and spanned by shape functions.

Tensor distributions were simulated including diagonal and general tensors with two subgoals

i) the recovery of smooth eigenvalues for a diagonal tensor that suggested theoretical unique-
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ness, and ii) the recovery of eigenvalues for a piecewise smooth general tensor distribution that

resembled physiological tissue like skull or brain white matter. Simulations included tensors

whose eigenvectors and eigenvalues varied smoothly throughout the domain and a DTI sample

of brain white matter. The inversion was performed by implementing a quasi-Newton method

with linear search.

8.2 Methods

8.2.1 Forward solution

The forward problem in this chapter was given by the weak formulation of the generalized

Laplace’s equation (2.16) with Neumann boundary condition (2.9),

∑

j

uj

∫

Ω
(∇φi)T σ∇φj =

∫

∂Ω
φiν

T J, (8.1)

whereu is the voltage solution in a 3D domainΩ with conductivityσ, ν is the unit outwards

normal to the domain surface∂Ω, J is the current density, andφ are linear shape functions

(2.19).

8.2.1.1 Basis functions

Let φi be the shape function at the ith-node, withi = 1, . . . , n wheren is the number of nodes,

(φ1, . . . , φn) were used as the basis functions for both the voltage and the conductivity. In this

basis, the voltage is

u =
n∑

j=1

ujφj , (8.2)

and the conductivity tensor is

σ =
n∑

i=1

σiφi, (8.3)

so then both the voltage and conductivity are piecewise linear1.

For every point(x, y, z) in Ω, whereσ is equivalent to a Riemannian metric in a manifold

(section D.4.5), being represented by a 3-by-3 positive definite symmetric matrix in some co-

ordinates, there is always an orthonormal transformation from the given coordinate system to a

diagonal matrix [36]. Defining the local coordinate system by the tensor eigenvectors,σ can be

represented as a diagonal matrixD in the local coordinate system (sections D.4.2 and A.2.1)

σ = V DV T , (8.4)

whereV = [v1, v2, v3] is a matrix of orthonormal eigenvectorsvi andD = diag(di) is a matrix

of real positive eigenvalues. In the local coordinate system, the eigenvector corresponding to

1In the rest of the thesis the conductivity is considered as piecewise constant; in this chapter, it is piecewise linear

except in the rank analysis section where both of them are considered.
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the largest eigenvalue defines the preferred direction of current flow. By providing the tensor

eigenvectors at each node positionri, the conductivity is spanned as

σ(x, y, z) =
n∑

i=i

σ(ri)φi =
n∑

i=i




3∑

j=i

vj(ri)dj(ri)vT
j (ri)


φi. (8.5)

In some special cases, the tensor eigenvectors were aligned with the axis, which led to diagonal

conductivity tensors

σ(x, y, z) =
n∑

i=i

diag(d1(ri), d2(ri), d3(ri))φi. (8.6)

Hence, tensor distributions were simulated by providing eigenvectors and eigenvalues,

(d1(ri), d2(ri), d3(ri)) = (f1(ri), f2(ri), f3(ri)), at each noderi wherefi are some smooth

spatial distributions.

Basis functions for injections and measurement patterns were the vectorsei ∈ RN per-

pendicular to ones (Figure 8.1(a)), since the Kernel of the NtoD map is a vector of constant

elements (p. 67),

e1 =
(

1,
−1

N − 1
, . . . ,

−1
N − 1

)

. . .

eN =
( −1

N − 1
, . . . ,

−1
N − 1

, 1
)

,

(8.7)

whereN is the number of boundary nodes, satisfying (2.12) for each injection. Thus,N current

injections andN measurements for each injection yieldsN2 boundary data. This provides the

complete NtD map, that is, the current is injected and the voltage is measured everywhere on

the surface.

8.2.1.2 System matrix

The system matrix for piecewise linear shape functions whose gradients∂lφ
(k)
i are constant in

an elementΩk and conductivities given by (8.3), was calculated as

Sij =
∫

Ω
dr∂lφiσlm∂mφj =

∑

k∈supp(i)∩supp(j)

∂lφ
(k)
i

[∫

Ωk

drσlm

]
∂mφ

(k)
j =

∑

k∈supp(i)∩supp(j)

∂lφ
(k)
i

[∫

Ωk

dr
4∑

s=1

σ
s(k)
lm φs

]
∂mφ

(k)
j =

∑

k∈supp(i)∩supp(j)

∂lφ
(k)
i Vk

[
1
4

4∑

s=1

σ
s(k)
lm

]
∂mφ

(k)
j =

∑

k∈supp(i)∩supp(j)

Vk

∑

l,m

∂lφ
(k)
i σ̄

(k)
lm ∂mφ

(k)
j ,

(8.8)
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Figure 8.1: Representation of a current injection by a vector with value1 at a given node

and value−1/(N − 1) an the rest of nodes, on the boundary, that is,ei = (−1/(N −
1), . . . , 1, . . . ,−1/(N − 1)), whereN is the number of exterior nodes.

where supp(i)∩ supp(j) is the support of the edge(i, j), σ̄
(k)
lm is the average of the nodal values

of the kth-element, and the integral of a shape function over an element is

∫

Ωk

φs =
Vk

4
, (8.9)

whereVk is the volume of the kth-element. In EIDORS, the shape function gradients are com-

puted in the reference element.

8.2.1.3 Uniqueness of the FP

Uniqueness needs to be imposed to the FP (p. 59); it was done as

∫

Ω
u =

∑

j

uj

∫

Ω
φj =

∑

j

uj

∑

k∈supp(j)

Vk

4
︸ ︷︷ ︸

Cj

= 0. (8.10)

Thus, the FP was solved as


 S

C1×n


U =


 I

01×n


 , (8.11)

whereU, I ∈ Rn×N for N current injections,I = [I∂Ω⊥I∂Ω] where∂Ω is the boundary and

∂Ω⊥ is the interior, such thatI∂Ω⊥ = 0 andI∂Ω = [e1, . . . , eN ], with n nodes andN exterior

nodes.

8.2.1.4 Measurements

Let U ∈ Rn×N be the forward solution,U = [u1, . . . , uN ], whereui is the solution corre-

sponding to the ith-current injection that can be separated in interior and boundary voltages as
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ui = [u∂Ω⊥
i , u∂Ω

i ], then theN measurements for this injection in the basis (8.7) were computed

as

Λi1 =< e1, u
∂Ω
i >

Λi2 =< e2, u
∂Ω
i >

. . .

ΛiN =< eN , u∂Ω
i >,

(8.12)

where i = 1, . . . , N . Thus, the NtD map2 is a map of the ith-currentei into the (i,j)th-

measurementΛij as

ei 7→ Λij , (8.13)

wherej = 1, . . . , N .

8.2.2 Sensitivity matrix

The Jacobian was computed both by finite differences and by the product of measurement and

current fields based on the derivation of the Jacobian for isotropic conductivity (3.13) [140].

Jacobians have been implemented with respect to the diagonal elements for a diagonal tensor

and with respect to the eigenvalues for a general tensor.

8.2.2.1 By finite differences

The sensitivity of the measurementΛij to a change of conductivity at the sth-node,σs
ll, was

computed as
∂Λij

∂σs
ll

=
Λij(σs

ll + ∆σs
ll)− Λij(σs

ll)
∆σs

ll

, (8.14)

where the conductivity increment was

∆σs
ll = max(|σll|)√eps, (8.15)

and eps was the floating point accuracy. In fact,σs
ll represents the diagonal elements for a

diagonal tensor or the eigenvalues for a general tensor.

8.2.2.2 By product of measurements and current fields

The injection fields for the ith-current injectionei were obtained by solving the forward problem

Sui = ei, and the measurement fields were obtained by solving the forward problemSu∗j = ej

whereej was the fictitious current corresponding to the jth-measurement.

For diagonal tensors, it was computed column by column where each column represented

a nodal conductivity tensor coefficient. Lets be the sth-node andlm be the tensor coefficient

2Here,Λ represents the matrix or vector of boundary data for the NtoD map, while everywhere else in the thesis,

Λ represents the DtoN map itself (section 3.1.1).
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indices3, the sensitivity matrix integrated over the support of thes vertex was calculated as

∂Λij

∂σs
lm

= −
∫

Ω
dr∂luiφs(r)∂mu∗j =

−
∑

k∈supp(φs)

∂lu
(k)
i

(∫

Ωk

drφs

)
∂mu

∗(k)
j =

−
∑

k∈supp(φs)

Vk

4
∂lu

(k)
i ∂mu

∗(k)
j ,

(8.16)

where for each measurement(i, j), the Jacobian with respect to the three diagonal entries at

a given node was be computed asĴQ whereĴ ∈ R3×p was given byĴ = [Ĵ (1), . . . , Ĵ (p)]

with Ĵ (k) = −Vk
4 ∂lu

(k)
i ∂lu

∗(k)
j andp is the number of elements, andQ ∈ Rp×n is a matrix

that contains an entry one if an element contains a node and zero otherwise. In fact,Ĵ is an

elementwise Jacobian column andQ accounts for the nodal support yielding a nodal based

Jacobian.

For a general tensor, by using the eigenvalue decompositionσ = V DV T , the sensitivity

matrix for each diagonal coefficientD
(s)
rr , wherer = 1, 2, 3, at the sth-node, was given by

∂Λij

∂D
(s)
rr

= −
∫

Ω
φs(r)∂luiV

(s)
lr V (s)

rm ∂mu∗j =

−
∑

k∈supp(φs)

(∫

Ωk

drφs

)
∂lu

(k)
i V

(s)
lr V (s)

rm ∂mu
∗(k)
j =

−
∑

k∈supp(φs)

Vk

4
(∇u

(k)
i )T (vrv

T
r )(s)(∇u

∗(k)
j ),

(8.17)

where for each measurement(i, j), it was computed by summing explicitly over all element

contributionsΩk for r = 1, 2, 3. Because the computational time for calculating the direct

Jacobian for general tensors (8.17) was larger than the equivalent FD Jacobian, the latter was

used for the simulations.

8.2.3 Finite element mesh

The finite element meshes used were spheres (148,309, and 807 elements) and cubes (495

elements); they were created with NETGEN [154].

8.2.4 Rank analysis

The study of the rank of the Jacobian aimed to test the numerical uniqueness in terms of having

a well conditioned map between the conductivity and the boundary data. If the Jacobian was

full-rank, then it was concluded that the data uniquely determined the unknowns and so the

inverse reconstruction would be well defined. Full-rank was understood (section A.2.3) when

3The Jacobian was derived as the sensitivity of the measurements with respect to all tensor coefficients, yet only

the diagonal elementsσll are needed.
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the Jacobian singular values decayed smoothly and were not zero, where zero was defined when

the ith-SV,si, was five orders of magnitude smaller than the first, that is,

si

s1
≤ 10−5. (8.18)

A second goal was to verify the hypothesis about the rank of the Jacobian for piecewise

constant conductivity that says that the rank of the Jacobian is given by the nodal connectivity

in the finite element mesh. As explained in Appendix D.4.5 (p. 237), the conductivity tensor

can be recovered in a two step approach, first, by recovering the abstract manifold structure,

and, second, by selecting the coordinate system. It is known that there is an arbitrary selection

of coordinate systems; here the aim was to verify that the abstract manifold is given by the finite

element nodal connectivity such that this number gives the maximum number of unknowns that

one can recover, for piecewise constant conductivity. Besides, by constraining the eigenvectors

for piecewise linear conductivity, the aim was to show that the number of unknowns for the

proposed constraint is less than the mesh connectivity, given by the rank of the Jacobian for

piecewise constant conductivity.

The idea is based on the equivalence between a finite element mesh and a resistor network,

from which replacing edges by resistors and solving the equivalent resistor mesh, the system

matrix is equivalent to the FE one (section 2.2.3) [106]. The nonzeros in the system matrix are

given by the nodal connectivity where entries are zero only if nodes are not connected or in the

case of a specific mesh, for example, with normal angles, for which the resistors conductance

can be zero (Figure 8.2). Because of symmetry, one cannot expect to recover more unknowns

than the number of nonzeros in the upper triangular submatrix of the system matrix, then the

rank of the Jacobian is

rank(J) =
nz(S)− n

2
, (8.19)

where nz(S) is the number of nonzeros in the system matrix andn is the number of vertices,

which accounts for the diagonal elements.

To test this hypothesis, the rank of two Jacobians was computed: a) with respect to the

eigenvalues for piecewise linear conductivity (8.16,8.17), and b) with respect to the six inde-

pendent tensor coefficients for piecewise constant conductivity given in [1]. The case a) aimed

to verify that the Jacobian was full rank and so the constrained numerical inverse problem pro-

posed here was well conditioned. The case b) aimed to estimate the mesh connectivity, that is,

the maximum number of unknowns that are determined by the data, since the Jacobian with re-

spect to the six tensor coefficients was expected to be rank deficient. It was done for a spherical

and a cubical mesh.
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Figure 8.2: Mesh connectivity, in 2D, such that the system matrix is zero when nodes are not

connected, that is, in this example the nonzero entries for node one are two to seven but not

eight.

In a), the conductivity was a diagonal matrix with sinusoidal functions. In b), the conduc-

tivity was a constant general tensor in the domain defined elementwise equal to

σ =




1.1 0.1 0.2

0.1 1.2 0.3

0.2 0.3 1.3


 . (8.20)

8.2.5 Simulated tensor distributions

Tensor distributions were simulated to test the feasibility of recovering piecewise linear eigen-

value distributions with known eigenvectors. In the simplest case, the tensor was diagonal

σ(x, y, z) = diag(dx(x, y, z), dy(x, y, z), dz(x, y, z)), (8.21)

wheredi provided the magnitude of the conductivity along each of the Cartesian axes. The

assumption of a diagonal tensor is valid in 3D continuously differentiable Riemannian man-

ifolds where there exist a local choice of orthogonal coordinates for which the Riemannian

metric, equivalent to the conductivity (D.4.5), is diagonal [36]. Hence, given a general conduc-

tivity tensor there exists a diffeomorphism that transforms the metric to a diagonal matrix in

the local coordinates. LetD be the diagonal conductivity tensor in local coordinates, there is

a diffeomorphismΨ that maps the global basis vectors{e1, e2, e3} into the local basis vectors

{v1, v2, v3}, such that the conductivity in global coordinates is given by

σ(x, y, z) = V (x, y, z)D(x, y, z)V T (x, y, z), (8.22)
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(a) Eigenvectors that were equal for the whole do-

main

(b) Eigenvectors that changed throughout the do-

main

Figure 8.3: Example of two anisotropic domains, whose anisotropic structure is given at each

point by the three orthonormal eigenvectors that form a local coordinate systemÓ whose axes

did not coincide with axes in the global coordinate systemO, where eigenvectors a) eigenvec-

tors were constant in the domain, b) changed throughout the domain.

whereV is the Jacobian ofΨ given by

V = [v1, v2, v3]. (8.23)

In fact, this is equivalent to the SVD of a matrixσ whereV is the matrix of eigenvectors andD

is the matrix of eigenvalues (sections D.4.2 and A.2.1)

D(x, y, z) = diag(d1(x, y, z), d2(x, y, z), d3(x, y, z)). (8.24)

General tensors were simulated using the eigenvalue decomposition (8.22) that allowed

initialising them based on knowledge of the material structure, that is, eigenvectorsvi indi-

cated the preferred directions of current flow, and eigenvaluesdi provided their magnitudes.

Diagonal tensors were a simplification where eigenvectors coincide with the axes, yet, in gen-

eral, eigenvectors had an orientation that did not coincide with the axes (Figure 8.3(a)), and

V = V (x, y, z) andD = D(x, y, z) were a function of space and changed orientation through-

out the domain (Figure 8.3(b)).

While eigenvectors provide the orientation, eigenvalues determine the shape of the physi-

ological tissue by favouring one specific direction or plane. This leads to two basic structures,

prolate and oblate (Figure 8.4(a)). In the prolate case, a dominant direction is described by a

larger specific eigenvalue that determined a fibre type structure. In the oblate case, two equally

dominant directions, with similar eigenvalues, defined a layered structure, where a third eigen-

vector is penalised by a lower eigenvalue.
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Figure 8.4: Main biological eigenvector orientation: a) oblate, of flattened structure like bone

tissue; b) prolate, resembling fibre structure like brain white matter.

Several tensor distributions were simulated in terms of eigenvector orientation and eigen-

value distributions type. Eigenvectors were defined, at each node of the domain, using concepts

of differential geometry that allowed description of three orthonormal vectors based on the ve-

locity and normal vectors to a 3D curve (section D.3). Given the eigenvectors, at each point of

the domain, eigenvalues determined two type of anisotropic structure: i) by assigning the veloc-

ity vector of a curve as the eigenvector with largest eigenvalue, and a plane perpendicular to the

curve as the two eigenvectors with lowest eigenvalue, similar to a bunch of fibres (prolate case);

ii) by assigning a surface changing throughout the domain as two eigenvectors with dominant

eigenvalues, and a perpendicular vector to the plane as an eigenvector with smallest eigenvalue,

similar to a layered structure (oblate case).

So far, only one tensor has been contemplated, however, real tissue comprises of a contin-

uous mix of different tissue types, which can be modelled by a weighted sum of two different

tensors accounting for an anisotropic structure with some extension that smoothly overlaps into

the isotropic parts of the domain. This ideas have been applied for building phantoms resem-

bling white matter fibre to test methods for the reconstruction of the diffusion tensor [102].

The last model was a diffusion tensor sample estimated from a DT-MRI sample of brain

white matter.

In summary, there were five goals for the diverse tensor simulations: recovery of constant

eigenvalues, to test the numerics; recovery of smooth eigenvalues for a diagonal tensor, to test

the numerical convergence of the proposed constraint; recovery of eigenvalues for a general

tensor, to test the feasibility for models resembling physiological structure; recovery of eigen-

values for a mix of two tensors, to test a more realistic case; recovery of eigenvalues of an
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estimated DT of brain white matter, to test for realistic human tensor structure (Table 8.1).

In terms of the eigenvector orientation type there were six types: axial, spherical, poly-

nomial, helical, mix of two different tensors, and the diffusion tensor, which were labelled as

Model 1-6 (Table below).

Model label Eigenvector orientation

Model 1 axial

Model 2 spherical

Model 3 polynomial

Model 4 helical

Model 5 mix of two tensors

Model 6 diffusion tensor (DT)

In terms of eigenvalue distribution type, five different types were simulated: constant,

linear, sinusoidal, exponential, and smooth mix of two tensors, which were labelled as Model

A-D (Table below).

Model label Eigenvalue distribution

Model A constant

Model B linear

Model C sinusoidal

Model D exponential

Model E mix of two tensors

Because of the diverse type of distributions, simulation labels and details are specified as

the simulation number, model ID, objective of the simulation, eigenvector and eigenvalue type,

geometry, and mesh; they are separated regarding their objective (Table 8.1).

Simulated eigenvalue distributions were intended to be recovered at the reconstruction

stage, and so it was required to provide an initial estimate as a first step for the inversion. Below,

eigenvectors and eigenvalue distribution and estimates for the simulated models are specified.

8.2.5.1 Model 1: axially orientated eigenvectors

In the case when the eigenvectors are orientated with the axis,V = [e1, e2, e3] = I3×3, then

σ = D = diag(d1, d2, d3), (8.25)

wheredi = di(x, y, z) in general. Several smooth eigenvalue distributionsdi were simulated:
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Table 8.1: Summary of simulations. Simulations are grouped regarding their purpose, the eigen-

vector (eigevec.) orientation and eigenvalue distribution type (eigvals.); they are labelled to be

easily found in the text. Also the geometry (geom.) and number of elements of the mesh are

given.

Model Aim Eigvec. Eigval. Geom. Mesh

1A constant axis constant cube 495

1B smooth eigvals. axis linear sphere 807

1C smooth eigvals. axis sinusoidal sphere 807

2A gen. eigvec. spherical constant sphere 148

2D gen. eigvec spherical exponential sphere 148

2D gen. eigvec. spherical exponential sphere 309

3A gen. eigvec. polynomial constant cube 495

5 (1A & 3A) mix two tensors - - cube 495

5 (1B & 4) mix two tensors - - sphere 309

6 DTI - - cube 495

• Model 1A: A constant distribution throughout the domain

σ = diag(
√

3, 1/
√

3, 1/
√

3) for all x, y, z. (8.26)

In this case, it resembled fibre type structure aligned with the x-axis favouring current

flow in that direction, in a cubical domain (Figure 8.5). The conductivity estimate was

σestimate = diag(1, 1, 1).

• Model 1B: A linear distribution

σ = diag(3 + x + y + z, 3.2 + x + y + z, 3 + 1.2x + 1.4y + 0.8z). (8.27)

In this case, these three linear functions were simulated in a spherical domain (Figures

8.14(a),8.14(c), 8.14(e)). The conductivity estimate wasσestimate = diag(3, 3, 3).

• Model 1C: A sinusoidal distribution

σ = diag(3 + cos(πx) + cos(πy) + cos(πz), 3, 3). (8.28)

In this case, a sinusoidal function was simulated in a spherical domain (Figures

8.15(a),8.15(c)). The conductivity estimate wasσestimate = diag(3, 3, 3).
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Figure 8.5: Model 1A: anisotropy structure with eigenvectors aligned with the axes in the given

global coordinates such that conductivity is favoured in the x-direction resembling a fibre type

material aligned with the x-axis. Since eigenvectors coincide with the axes, the conductivity

tensor is diagonal, where diagonal elements weight the conductivity along each axis; the simu-

lated conductivity wasσ = diag(
√

3, 1/
√

3, 1/
√

3), constant in a cubical domain.

8.2.5.2 Model 2: Spherically orientated eigenvectors

Given the change of coordinatesx̃ 7→ x wherex̃ = (θ, φ, r) are the local spherical coordinates,

eigenvectors were defined as the local basis vectorsV = [eθ, eφ, er]. Similarly, the same result

is obtained by assuming a spherical surface of radiusr, at each point(x, y, z), such that each

radius defined a spherical plane that can be represented by the two velocity vectorsv1 = vθ

andv2 = vφ tangential to the surface at the given point (section D.3), and the third eigenvector

v3 = ∇f is perpendicular to the surfacef = x2 + y2 + z2. The eigenvectorsV = V (θ, φ, r),

whereθ = arctan(y/x) andφ = arccos(z/r) were defined at each node as

v1 = (cos θ cosφ, cos θ sinφ,− sin θ)T

v2 = (− sin θ sinφ, sin θ cosφ, 0)T

v3 = (x, y, z)T

(8.29)

wherevi were normalised. In fact, this model presented a singularity in the center of the domain,

r = 0 andx = 0 that was avoided because there was not a vertex at(0, 0, 0). Thus, eigenvectors

(vθ, vφ, vr) were defined at each point of the volume (Figure 8.6).

Several smooth eigenvalue distributiondi were simulated:
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Figure 8.6: Model 2A for which eigenvectors are defined locally coinciding with the axes in

spherical coordinates where the most important direction, the gradient direction, is shown.

• Model 2A: A constant distribution throughout the domain

D = diag(1, 1, 4) for all x, y, z. (8.30)

In this case, the conductivity is higher in the radial direction than perpendicular to it, so

it resembled an anisotropic structure made of fibres that are born in the center and flow

towards the surface. The conductivity estimate wasDestimate = diag(1, 1, 1).

• Model 2D: An exponential distribution

D = diag(1, 1, exp[−2(x2 + y2 + z2)]). (8.31)

In this case, the conductivity in the radial direction decays exponentially as it approaches

to the center of the sphere. The conductivity estimate wasD = diag(1, 1, 1).

8.2.5.3 Model 3: Polynomially orientated eigenvectors

Based on the parametric curve

(x, y, z) = (x, t, at2), (8.32)

eigenvectors were based on the velocity vector, its derivative or normal, and their vectorial

product or binormal (Appendix D.3),V = [v̂t, ât, b̂t] (wherê represents the normalised version

of a vector). For the simulation, the three vectors were simplified as

v1 = (0, 1, 2ay)

v2 = (0,−2ay, 1)

v3 = (1, 0, 0)

(8.33)

wherea = 1/8. This defined a layered structure where planes were formed by the eigenvectors

v1 andv3, the velocity vector to the curve and the x-axis, andv2 was normal to the curve, such
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thatv1 andv2 were equal fory = const. and smoothly vary withy, andv3 was constant for the

whole domain (Figure 8.7(a),8.7(b)).

Model 3A: Eigenvalues were defined as a constant distribution throughout the domain as

D = diag(
√

3, 1/
√

3,
√

3), (8.34)

so the plane formed by the normal and the velocity vector,(v1, v3), defines a layered structure

of preferred current flow (Figure 8.7(a)). The conductivity estimate was set to diag(1, 1, 1).

8.2.5.4 Model 4: helical orientated eigenvectors

Based on a helix function

(x, y, z) = (R cos(θ), R sin(θ), Pθ/π), (8.35)

whereR is the radius of the helix andP/π its velocity, were calculated as

vθ = (−R sin θ, R cos θ, P/π)

aθ = (−R cos(θ),−R sin(θ), 0)

bθ = vθ ∧ aθ

(8.36)

wherevθ was the velocity vector which defined the dominant direction, andaθ andbθ were the

normal and binormal to the curve, respectively, that defined a perpendicular plane to the curve

(Figure 8.8(a)). EigenvectorsV = V (x, y, z) = V (θ) were computed at each point of the finite

discretisation. Thus, givenz, θ was computed as

θ = θ(z) = πz/P, (8.37)

being equal for thexy-plane and changing smoothly withz. For example, for the planez = 0,

thex andy coordinates of the first eigenvector werevθ ∝ (0, 1); for z = 1/4, vθ ∝ (−1, 1).

The helix parameters wereR = 0.5 andP = 1 (Figure 8.9).

8.2.5.5 Model 5: mix of two tensors

A piecewise smooth distribution of tensors with a smooth overlap of two regions of different

tensor structure was simulated based on DT-MRI phantoms that resemble white matter fibre

track [102]. The tensor distribution was defined by adding up a background diagonal tensorσ1

with a general tensorσ2 weighted by a smooth factor functionf(x, y, z) of the space as

σ = σ1(x, y, z) + f(x, y, z)σ2(x, y, z). (8.38)

Eigenvalue distributions were simulated as follows.
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(a) First and second eigenvectors
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(b) Eigenvector corresponding to the largest eigenvalue

Figure 8.7: Model 3: anisotropic cubical domain (mesh of 495 elements) with eigenvectors

changing along the y-direction, such that a) the first and second eigenvectors are the velocity

and normal vectors to the curve(x, y, z) = (x, t, at2), for a = 1/8, that is,v1 = (0, 1, 2ay),

v2 = (0,−2ay, 1), andv3 = (1, 0, 0) for the whole domain. Model 3A: eigenvalues weighting

the conductivity along eigenvectors wereD = diag(
√

3, 1/
√

3,
√

3), so that each planey =

const. given by b)v1 or v3 defined a plane of preferred current flow, changing smoothly withy,

and penalised the direction perpendicular to that plane given byv2.
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(a) Helix (spring center)
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(b) Spring surface

Figure 8.8: Model 4: anisotropic structure with preferred current flow along a helix and

penalised along its perpendicular plane, defined in a spherical domain. a) Helix function,

(x, y, z) = (R cos(θ), R sin(θ), Pθ/π), along which the first eigenvectorvθ is defined as

the velocity vector for every point of the domain being the predominant direction. b) Spring

surface that represents the volume from defining a helix at each point, weighted with max-

imum weight in its center. Model 5(1B & 4): the conductivity was simulated byσ =

diag(0.5, 1.7, 0.5) + 1.3 exp(−2r2)V diag(1.7, 0.5, 0.5)V T wherer is the perpendicular dis-

tance from a point to the helix, whereV = [vθ, aθ, bθ], andvθ = (−R sin θ, R cos θ, P/π),

aθ = (−R cos(θ),−R sin(θ), 0), bθ = (0, 0, 1).
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Figure 8.9: Model 4: Helix model where the first eigenvector is defined to be tangent to the

helix. It is shown, here, projected in the planez = 0 andz = 1 being constant for each plane

z = const. and varying smoothly withz.
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Figure 8.10: Weighting functionf(z) = 0.5(1 + cos(2πz)) used for adding up to tensor distri-

butions in Model 5(1B& 4).

• Model 5 mix of 1A and 3A: The polynomial distribution of eigenvectorsV of (8.33)

within an isotropic background

σ = diag(1, 1, 1) + f(z)V diag(
√

3, 1/
√

3,
√

3)V T , (8.39)

weighted by a sinusoidal function (8.10(a))

f(z) = 0.5(1 + cos(2πz)) for z ≤ 0.5

f(z) = 0 for z > 0.5
(8.40)

such that the upper half plane of the cube was isotropic and the lower part changed

smoothly into a layered structure.
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• Model 5 mix of 1A and 4A: Based on a helix function

σ = diag(0.5, 1.7, 0.5) + 1.3 exp(−2r2)V diag(1.7, 0.5, 0.5)V T , (8.41)

wherer is the distance from the given vertex to the helix curve andV = [vθ, aθ, bθ].

Based on a parametric helix (8.35), then the eigenvectors were the normalised vectors

of (8.36). This structure aiming to be similar to white matter fibre defined a spring, or

volumetric helix, where the helix indicated the dominant direction and its perpendicular

plane defined the volume. It was also weighted where eigenvalues decreased exponen-

tially from the center of the helix, so the tensor distribution smoothly mixed with the

surrounding tensor. This aimed to approximate white matter phantoms that simulate a

piecewise smooth tensor defined along a random walk such that it has the same proper-

ties as tissue: i) it has a non constant curvature, ii) it has an extension or volume, and iii)

it mixes smoothly with the isotropic surrounding [102] (to note that i) was not intended

to be modelled here).

8.2.5.6 Model 6: Diffusion tensor

Eigenvectors were computed from a Diffusion Tensor detail of brain white matter, of resolution

8-8-8 (2mm voxels). It was estimated following the procedure given in section 9.2.3.1: first, by

estimating the DT, second, by interpolating the tensor coefficients, and finally by extrapolating

them in a cubical mesh (495 elements), (Figure 8.22(a)-8.22(d)).

8.2.6 Inverse Problem

An iterative algorithm was applied to minimise the objective function

f(xk) =
1
2
‖F (xk)− d‖2, (8.42)

whereF (xk) was the predicted boundary voltages for the conductivityxk at stepk, andd was

the simulated data (real data in practice) for the true solutionxtrue, d = F (xtrue).

The Quasi-Newton method BFGS was applied as indicated in (3.39), with the objective

gradient was calculated as

∇f(xk) = JT
k (F (xk)− d), (8.43)

whereJ was the Jacobian (8.16 or 8.17).

8.3 Results

8.3.1 Rank analysis

The Jacobian with respect to the eigenvalues for piecewise linear conductivity (case i)) was full

rank (Figure 8.11(b)). A comparison between the Jacobian computed by product of fields and by
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Figure 8.11: Rank analysis of the Jacobian with respect to the diagonal elements where a) is a

comparison between the Jacobian computed by FD and product of fields,(Jdirect−JFD), and b)

is the SV spectrum. The direct and finite difference Jacobians agreed up to the FD incremental

step length∆σ ' 10−8. It was full rank with conditioning cond(J) = 59. It corresponded

to a sphere mesh of 148 elements with 2916 measurements and diagonal conductivity with

sinusoidal diagonal elements.

FD was done to verify the numerics where the conductivity increment (8.15) was∆σii ' 10−8

(Figure 8.11(a)).

The rank of the Jacobian with respect to the six independent coefficients for piecewise

constant conductivity (case ii)) was verified to be given by the mesh connectivity. Besides,

it was larger than the number of unknowns for the proposed inverse problem, three times the

number of nodes, which agreed with the case i) being full-rank (Figure 8.12(b), Table 8.2). For

example, for a spherical mesh with148 elements and60 nodes, the number of measurements

wasns = 2916 and the number of unknowns was6n = 180. The JacobianJ ∈ R2916×888 had

rankr(J) = 259 wherer < 6ns yet r > 3n. Thus the proposed constrained problem with3n

unknowns had full rank Jacobian.

8.3.2 Recovery of eigenvalues

The objective function (8.42), its gradient (8.43), and the solution error is given for the ten

simulations (Table 8.1). The solution error norm decreased less than10% for a constant tensor

distribution, (Model 1A, Figure 8.13(a)). The recovery of a smooth eigenvalue distribution

pattern was possible: linear (Model 1B Figures 8.14(a)-8.14(f)), and sinusoidal (Model 1C

Figures 8.15(a)-8.15(f)). The recovery of eigenvalues for generally orientated tensors was done
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Table 8.2: Mesh parameters and rank results for the JacobianJ with respect to piecewise con-

stant conductivity, for a general anisotropic tensor constant in the domain, whereJ ∈ RN2×6ns

for # meas.= N2, the dof(E) is the number of nonzeros in the upper triangular part of the

system matrixE, ns is the number of elements,n is the number of nodes,N is the number of

exterior nodes, and geom. is the geometry.

ns 6ns n 3n # meas. rank(J) dof(E) geom.

148 888 60 180 2916 259 259 sphere

384 2304 125 375 9604 604 604 cube
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(b) J spectrum for a cubical mesh

Figure 8.12: Rank analysis of the Jacobian with respect to the six coefficients for piecewise

constant conductivity, for the complete NtoD and current and measurement pattern given by

vectors perpendicular to one (the only thing that changes with respect to the rest of the chapter

is that the conductivity is piecewise constant instead of linear). SV spectrums for a) a spherical

mesh (148 elements), and for b) a cubical mesh (384 elements).
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Figure 8.13: Model 1A. Results of the recovery of the eigenvalues for Model 1A, for

which eigenvectors coincide with axis and conductivity was a constant distributionσ =

diag(
√

3, 1/
√

3, 1/
√

3) in a cube of 495 elements. Objective function (top left), objective gra-

dient (top right), relative error norm (bottom left), and max relative error (bottom right), versus

the iteration number.

with error less than10% (Models 2A-6, Figures 8.16(b)-8.22(f)).

8.4 Discussion

It has been verified numerically that is is possible to recover a piecewise linear conductivity

tensor in a 3D anisotropic medium from the complete NtoD map for the constrained case with

known eigenvectors. Simulations were done with two aims. First, the purpose of recovery

of three piecewise linear eigenvalues was to verify numerical uniqueness for this constraint.

The second was to demonstrate that the recovery of eigenvalues for general tensors with an

eigenvector orientation that resembled physiological tissue was possible. Simulations included

diagonal tensors with smooth eigenvalues, general tensors representing anisotropic structures

of a fibre or layered type, piecewise tensor distributions varying smoothly along the domain,

and a DTI sample of brain white matter. For the first case, a linear and a sinusoidal pattern

were recovered for diagonal tensors. For the second case, eigenvalues for general tensors were

recovered with an error below10%. A rank analysis of the rank of the Jacobian of the complete

NtoD map with respect to piecewise linear conductivity sampled on the vertices was full rank,

for which the number of unknowns is three times the number of vertices, verifying that the

inverse problem for this constraint is well conditioned. The rank of the Jacobian for piecewise
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(a) Simulatedσxx (b) Reconstructedσxx

(c) Simulatedσyy (d) Reconstructedσyy

(e) Simulatedσzz (f) Reconstructedσzz

Figure 8.14: Model 1B. Results of the recovery of the eigenvalues for Model 1B for a spherical

mesh of 807 elements, for which eigenvectors coincide with axes and conductivity eigenvalues

were three linear distributions. The simulated linear distributions wereσxx = 3 + x + y + z,

σyy = 3.2 + x + y + z, σzz = 3 + 1.2x + 1.4y + 0.8z, for a conductivity estimateσestimate =

diag(3, 3, 3). Cross sections centered at the origin for simulated (left) a)σxx, c) σyy, e)σzz and

reconstructed (right) b)σxx, d) σyy, f) σzz eigenvalues.
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Figure 8.15: Model 1C. Results of the recovery of the eigenvalues for Model 1C for a spherical

mesh of 807 elements, for which eigenvectors coincide with axis and conductivity was a cosine

distribution for the first eigenvalue and constant for the other two. Simulated distributions were

σxx = 3 + cos(πx) + cos(πy) + cos(πz), σyy = 3, σzz = 3, for a conductivity estimate

σestimate = 3. Surface plot of the a) simulated and b) reconstructedσxx, cross sections of the

c) simulated and d) reconstructedσxx, f) σyy, and e) objective function (left) and its gradient

(right) are given versus the iteration number.
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Figure 8.16: Model 2A. Results of the recovery of the eigenvalues for Model 2A for a spher-

ical mesh of 148 elements, for which eigenvectors are defined locally coinciding with axes in

spherical coordinates, and eigenvalues were constant in the domain. The conductivity tensor

was given byσ = V DV T , whereV = [vθ, vφ, vr] and eigenvaluesD = diag(1, 1, 4), such

that the radial was the preferred direction for current flow. a) Objective function (left) and its

gradient (right), and b) the recovered eigenvalues are given.
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Figure 8.17: Model 2D. Results of the recovery of the eigenvalues for Model 2D for a spher-

ical mesh of 148 elements, for which eigenvectors are defined locally coinciding with axes in

spherical coordinates, and the first two eigenvalues were constant in the domain and the third

one was exponentially decreasing towards the center. The conductivity tensor was given by

σ = V DV T , whereV = [vθ, vφ, vr] and eigenvaluesD = diag(1, 1, exp(−2(x2 + y2 + z2))).

Objective function (top left), objective gradient (top right), maximum relative error in percent-

age (bottom) are given versus the iteration number.
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(a) Objective function, its gradient, and maximum solution error

(b) Simulatedσzz (c) Reconstructedσzz

Figure 8.18: Model 2D. Results of the recovery of the eigenvalues for Model 2D for a spherical

mesh of 309 elements, for which eigenvectors are defined locally coinciding with axes in spher-

ical coordinates, and the first two conductivity eigenvalues were constant in the domain and the

third one was exponentially decreasing towards the center. The conductivity tensor was given by

σ = V DV T , whereV = [vθ, vφ, vr] and eigenvaluesD = diag(1, 1, exp(−2(x2+y2+z2))). a)

Objective function (top left), objective gradient (top right), maximum relative error in percent-

age (bottom) versus the iteration number; cross sections of the b)simulated and c) reconstructed

third eigenvalueσzz.
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Figure 8.19: Model 3A. Results of the recovery of the eigenvalues for Model 3A for a cubical

mesh of 495 elements, for which eigenvectors are defined locally parallel and perpendicular

to a polynomial plane. Objective function (top left), objective gradient (top right), maximum

percentage relative error norm (low left), and maximum percentage relative error (low right)

versus the iteration number.
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Figure 8.20: Model 5(1A & 3A). Results of the recovery of the eigenvalues for Model 5 (1A &

3A) for a cubical mesh of 495 elements, from a mix of two tensors that yield a smooth overlap

between a tensor with eigenvectors defined locally parallel and perpendicular to a polynomial

plane, and an isotropic background. Objective function (top left), objective gradient (top right),

maximum percentage relative error norm (bottom left), and maximum percentage relative error

(bottom right) are given versus the iteration number.
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(a) Objective function (top left), its gradient (top right), and maximum

solution error (bottom left)

(b) Simulatedσzz (c) Reconstructedσzz

Figure 8.21: Model 5(1B & 4). Results of the recovery of the eigenvalues for Model 5 (1B & 4),

(spherical mesh of 309 elements), from a mix of two tensors that yield a smooth overlap between

a tensor with eigenvectors defined locally parallel and plane perpendicular to a helix function,

and an isotropic background, and with eigenvalues exponentially decaying towards the center of

the helix. a) Objective function (top left), objective gradient (top right), maximum percentage

relative error norm (bottom left), and maximum percentage relative error (bottom right) are

given versus the iteration number, with cross sections of the b)simulated and c) reconstructed

third eigenvalueσzz.
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(f) Objective and gradient

Figure 8.22: Model 6. Results of the recovery of the eigenvalues for Model 6 for a cubical mesh

of 495 elements, for which eigenvectors were computed from a Diffusion Tensor (DT) detail,

of resolution 8-8-8 (2mm voxels), by interpolating the tensor elements and extrapolating them

in the mesh vertices. DT details at a)z = 0 and c)z = 0.38 and b,d) their projections into the

mesh, respectively. e) Objective function (top) and objective gradient (bottom) are given versus

the iteration number.
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constant conductivity was verified to be given by the nodal connectivity and to be larger than

three times the number of unknowns.

Finite element meshes were very coarse because considering all possible measurements

grew asN2 whereN is the number of boundary nodes. Validation on a finer mesh would verify

these results. Simulations considering general tensors used the Jacobian with respect to eigen-

values computed by FD since the direct Jacobian method was very slow; therefore, it should be

vectorised to run larger problems. Because simulations took hundred of iterations to decrease

the solution error below10%, some simulations shown here were stopped before then, yet the

recovery of the eigenvalues distribution was assumed by visualising the reconstructed distri-

butions (Models 1B and 1C, linear and sinusoidal, respectively). Convergence was generally

assumed when the objective gradient had decreased four or five orders of magnitude; however,

no differences in image quality was significant when the solution error norm decreased below

10− 5%.

A previous analysis showed the rank analysis of the Jacobian to be between one and three

times the number of elements [1]. These results verified that the rank of the Jacobian is larger

than three times the number of vertices, and so the numerical problem is well conditioned. In

fact, one could expect to be able to recover higher order piecewise polynomials as long as the

number of unknowns is less than the boundary data.

As for physiological tensor distributions, concentric spheres could represent the skull or

scalp by initialising the eigenvectors in spherical coordinates. This encourages further study to

be applied to a real phantom with anisotropic structure for which the eigenvector orientation

can be approximately estimated. Theoretically, it is known that one can recover one eigenvalue

from the boundary data, yet no result is known about recovering two or three eigenvalues. These

results suggest that numerical uniqueness occurs when eigenvectors are provided and encourage

theorists to study this constraint.

The practical relevance of this constraint is clear for EIT of medical applications where

muscle, bone tissue, and white matter have a conductive preferred direction, which can be

approximated from a structural imaging modality like MRI or directly estimated with DT-MRI.



Chapter 9

Influence of anisotropy on a realistic FEM

model of the head

9.1 Introduction

It is well known that both the skull and white matter conductivities are anisotropic, however,

for EIT of brain function they have been so far considered as isotropic.

9.1.1 Background

The white matter conductivity ratio normal:parallel to the fibres was found to be1 : 9 [121].

The skull, which is comprised of two plates of hard bone tissue enclosing soft bone tissue

of higher conductivity, could be represented as a layer with an effective conductivity ratio ra-

dial:tangential to the skull surface of1 : 10 [146], which has been adopted as an upper bound

ratio for studying the influence of anisotropy of the skull for EEG [182]. In vivo DTMRI mea-

surements, the brain conductivity tensor can be estimated from the water self-diffusion tensor

estimated by using the cross-property relation [173, 172], which relates the transport model for

the two tensors with the underlying microstructure. A statistical analysis of the microstruc-

ture in terms of the intra- and extracellular space transport coefficients yields the conductivity

and diffusion tensors sharing eigenvectors. Furthermore, at quasistatic frequencies where the

current does not cross the intracellular space, there is a strong linear relationship between the

diffusion and conductivity tensor eigenvalues. The scalp, which contains muscle tissue, can be

estimated as being 1.5 more resistive in the radial than in the tangential direction at 50KHz [77].

A review of tissue impedances for the head tissues can be found in [77, chapter2].

The effect of anisotropic conductivity of muscle has been studied for absolute EIT of

the heart by providing information about the tissue boundaries, obtained from MRI, and the

anisotropic structure of muscle, assuming a cylindrical symmetry and a conductivity ratio tan-

gential:normal to the muscle of 4.3:1, in 2D and 3D [54, 55]. The anisotropy of the my-
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ocardium was not modelled because of the difficulty of estimating its anisotropic structure.

In 3D, anisotropy of the muscle resulted in a shunting effect which influenced the measure-

ments and reconstructed conductivity, yet did not dominate over other model parameters. The

conductivity values tangential and normal to the muscle were reconstructed assuming that the

conductivity was constant for each tissue.

The influence of anisotropy for EIT of the head has not been studied, but, it has been for

EEG. A high resolution FEM model was used to study the influence of anisotropy of white

matter for the EEG forward model, incorporating the brain conductivity tensors from DTMRI;

from the results from the forward problem, it was suggested that the magnitude of the sources

would be more affected than localisation and the effect would be greater when sources were

deeper in the brain [66]. In contradiction with the previous result, a study in a 2D EEG forward

model emphasized that looking at the correlation was not enough and found a high correla-

tion yet more than30% discrepancy in the relative error between model potentials for isotropy

and anisotropic white matter estimated from DTMRI. From this result, it was concluded that

anisotropy of white matter would influence source localisation because a previous analysis com-

paring a three-shell spherical with a realistic model yielded 5-10% relative error and an averaged

1.97cm localisation error [90].

A study that modelled anisotropy of the skull and white matter for the EEG forward prob-

lem analysed the effect of anisotropy by increasing the conductivity ratio of both tissues from

one to ten, in terms of the Relative Difference Measure (RDM), which was described as a mea-

sure of the topographic error that compared the isotropic and anisotropic electrical fields [182].

For sources near the cortex, RDM was11%, mainly affected by the skull anisotropy; for sources

deeper in the brain: RDM was10%, where now white matter anisotropy appeared most rele-

vant. The effect of anisotropy for EEG source localisation reported a localisation error of up to

18mm, for superficial sources, being mainly sensitive to 1:10 skull anisotropy; and 6mm, for

deeper sources [181, Chapter 7].

9.1.2 Objective and experimental design

The aim was to study the influence on the forward and inverse solutions of incorporation of

anisotropy in a realistic numerical head model. This included four tissue types: scalp, skull,

CSF, and brain [170], and anisotropy was included for all except the CSF. The forward solutions

were compared in terms of i) the current norm, ii) the reduction of current that flows into the

brain, which is relevant for the modelling studies, iii) the percentage error in the domain and

on the boundary voltages by neglecting anisotropy, and iv) the percentage difference between

boundary voltages corresponding to a model with and without a conductivity perturbation in
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the brain. For the linear inverse solution subgoals were i) to study the effect of simulating data

with the anisotropic model and reconstructing it with the isotropic model, and ii) to study the

effect of simulating data with the anisotropic model and reconstructing it with the anisotropic

model based on the assumption that the only possible conductivity change was a multiple scalar

to a general anisotropic tensor. Previous to the head model, a preliminary analysis aimed to

study the effect of anisotropy for simple cubic and a concentric spherical models in terms of the

magnitudes used for the comparison for the head model: voltage and current density. For the

cubical domain, the objective was to verify that the voltage decreased from the injection point

equally in all directions and isopotential lines were semicircles with center at the injection point,

for the isotropic model; and that isopotential lines redistributed from semicircles centered at the

injection point to lines parallel to the predominant conductivity direction, for the anisotropic

model. For the concentric spherical domain, for which the outer and inner shells were isotropic

and the middle one resembled the anisotropy of the skull, the objective was to verify that the

preferential current flow was tangential to the skull surface rather than into the inner shell.

A realistic FEM model of the head that discerned scalp, skull, CSF, and brain was created

from the segmentation of a T1-MRI and tessellation in tetrahedra for the volume enclosed by

the segmented surfaces. The selected isotropic conductivity values, obtained from [77], cor-

responded to a frequency of 50KHz that provided the largest conductivity change for epilepsy

[44]. Before meshing, the T1-MRI was coregistered to the reference of the DT-MRI.

Three tissues were modelled as anisotropic: the scalp, the skull, and white matter. The

anisotropic information for the brain was obtained in three steps. First, for a DT-MRI, of the

same subject as the T1-MRI, the diffusion tensor coefficients were interpolated at the center of

the brain tetrahedra. Second, the conductivity tensor was linearly related to the diffusion tensor

by assuming both tensors shared eigenvectors and eigenvalues were linearly related. Third, the

conductivity tensor trace was scaled to match the isotropic trace. The anisotropy for the scalp

and skull was approximated by using the eigenvalue decomposition such that eigenvectors were

two unit vectors parallel to the surface and one perpendicular to it. Eigenvalue tangential:normal

ratios were 1.5:1 for the scalp [78] and 10:1 for the skull [182]. Also, the skull and scalp tensor

trace was constrained to be equal to the equivalent isotropic trace.

The effect of anisotropy in the forward solution was studied qualitatively: first, by looking

at the current density norm to verify that the current preferred direction of flow was tangential

to the scalp and skull surfaces and along white matter fibres. This was done for meaningless

isotropic conductivity values considering only the isotropy of the skull to isolate its effect; the

same was done for the brain tissue. Second, both realistic isotropic and anisotropic models for
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the scalp, skull, and brain of the head were compared in terms of the voltage, boundary voltages,

and current density norm, with and without a local conductivity perturbation in the brain.

The effect of neglecting anisotropy in the reconstructed images was studied by simulating

eight selected boundary voltages with the anisotropic model and recovering linearly the con-

ductivity with the isotropic one, for a local perturbation at five positions in the brain: occipital

to simulate stimulation of the visual cortex, temporal and hippocampus to simulate changes

in epilepsy, and another two in the parietal and temporal lobe surrounded by white matter.

In addition, all the simulated boundary voltages were reconstructed with the proposed linear

reconstruction method for the recovery of a multiple scalar to a general conductivity tensor,

assuming that tensor eigenvectors and eigenvalue ratios were known. Images were visualised

and compared in terms of the localisation error.

9.2 Methods

9.2.1 Preliminaries: Voltage and current density in an anisotropic domain

The aim of this section was to visualise the effect that anisotropy had on voltage and the current

density, magnitudes that were used to compare the effect of anisotropic conductivity for the

head model, in two simplistic domains: a cube and a concentric sphere.

Given an anisotropic conductivity tensorσ in the domain, the forward problem was solved

for one current injection, which provided the voltageu everywhere, then the electrical field

E = −∇u and current density vectorJ = σE were computed and visualised, where theσ was

nodal based and current and measurement patterns were vectors perpendicular to ones to avoid

the use of a pair electrodes for the injection (p. 135 in chapter 8). The corresponding isotropic

model was also visualised for the comparison.

9.2.1.1 Cubic model

An anisotropic cubic domain with constant conductivity tensor was simulated with the con-

ductivity in the x-direction being ten times larger than along its perpendicular plane, that

is, σ = diag(10, 1, 1) everywhere. The corresponding isotropic domain had conductivity

σ = diag(1, 1, 1).

9.2.1.2 Three-shell spherical model

The qualitative effect of the anisotropy of the skull was approximated using a three concentric

spherical model (Figures 9.18(a) and 9.18(b)), where the inner and outer spheres were isotropic

and the one in between was anisotropic with radial:tangential conductivity ratio 1:10. That

is, σ = diag(1, 1, 1) in the isotropic part andσ = αV DV T with D = diag(10, 10, 1) in

the anisotropic part of the domain, whereV = [v1, v2, v3], v1 andv2 represent two tangential
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(a) Original T1-MRI of 256-256-150 voxels of size

(0.94,0.94,1.2)mm

(b) Undersample and cut T1-MRI of 128-128-75

voxels of size (1.88,1.88,2.4)mm

Figure 9.1: T1-MRI of a 24 year old male, acquired at 3T.

directions andv3 represents the normal direction, andα is a constant factor to force the isotropic

tensor to have the same trace as the isotropic one, trace(σ) = trace(D) = 3 (section E). Hence,

D = diag(1.493, 1.493, 0.15).

9.2.2 Head model: geometry and mesh

9.2.2.1 MRI and DT-MRI data sets and pre-processing

A T1-weighted MRI and diffusion weighted MRI of the same subject, a 24 year old male, were

taken from the IXI-server at UCL (http://ixiserv.cs.ucl.ac.uk/). The DTI acquired at 3T, had

15 diffusion weighted images in different directions withb = 1000s/mm2 and reference B0

(b = 0), with voxel resolution of1.75× 1.75× 2mm and128× 128× 64 voxels (Figure 9.2(a)

corresponds to the B0, i.e. zero diffusion). The T1-MRI acquired at 3T, had a voxel resolution

of 0.94× 0.94× 1.2mm with 256× 256× 150 voxels (Figure 9.1(a)).

Pre-processing of the T1-MRI was done because of its high resolution. First, the lower

part of the head corresponding to the jaw was neglected since almost no current flows there;

it would have lead to a excessively high density mesh [170]. It was cut below the brain using

the VTK software (http://www.vtk.org/Wiki/VTK). Second, it was undersampled by half in

three directions using MRIcro (www.mricro.com) leading to a voxel size1.88× 1.88× 2.4mm

(Figure 9.1(b)).

9.2.2.2 Coregistration of MRI to the DT-MRI data

Previous to the coregistration, the T1-MRI and B0 of the DT-MRI were prealigned, and

B0 slices corresponding to the blank spaces were increased to match those of the MRI
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(a) B0 (DT-MRI) of 135-135-75 voxels of size

(1.75,1.75,2)mm

(b) T1-MRI after being coregistered to the B0 of

135-135-75 voxels of size (1.75,1.75,2)mm

Figure 9.2: B0 of the DT-MRI and the coregistered T1, from which the FE mesh was obtained.

to avoid the MRI to be cut at the coregistration stage. Also MRICro, BrainSuite 2.0

(http://brainsuite.usc.edu/) [158], and (X)MedCon 0.9.9.0 (http://xmedcon.sourceforge.net/)

[123] were used for visualising and converting among DICOM, analyze, and nifty formats

(http://www.sph.sc.edu/comd/rorden/mricro.html). The MRI was normalised and coregistered

to the B0 and resliced after the coregistration using SPM2 (http://www.fil.ion.ucl.ac.uk/spm/)

[47, 10]. If first applied an affine transformation followed by a nonlinear deformation that

minimised a least squares functional based on maximum entropy (Figure 9.2(b),9.3,9.4).

9.2.2.3 Segmentation and meshing

The coregistered T1 was segmented and tessellated to a tetrahedral FEM mesh (procedure sug-

gested by Raya Schindmes, Medical Physics, UCL [153, 152]). The segmentation and surface

extraction of four tissues, brain, CSF, scalp, and skull, was done using BrainSuite [158, 39],

and the meshing using Cubit (Figures 9.5(a), 9.5(b)). The mesh contained 311,727 tetrahedra

for the whole head and 132,272 for the brain.

9.2.3 Head model: conductivity tensor estimate

9.2.3.1 Diffusion tensor estimation

The diffusion tensor was estimated from the DT-MRI data using the MATLAB tools provided

by CMIC-wiki. Atkinson’s eshowvisualisation tool and other routines were used for display-

ing the DWI and reconstructing and visualising the diffusion tensor. LetDWI be the diffusion

weighted images acquired at fifteen different directions, whereg indicates the diffusion direc-

tion, the diffusion tensorD can be approximated by

DWI = B0exp(−bgT Dg). (9.1)
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Figure 9.3: Results of the coregistration of T1-MRI to the B0 of the DT-MRI. Top) initial (left)

and final (right) histograms, and bottom) target B0 (left) and coregistered T1 (right).
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Figure 9.4: Second view of the results of the coregistration of T1-MRI to the B0 of the DT-MRI.

Top) initial (left) and final (right) histograms, and bottom) target B0 (left) and coregistered T1

(right).
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(c) Conductivity values for the head model

Figure 9.5: Mesh from the coregistered T1-MRI, of 311,727 tetrahedral. a) Brain mesh, b)

scalp mesh, c) conductivity model with isotropic conductivity values (S/m): brain0.30, CSF

1.79, skull 0.018, scalp0.44.
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Figure 9.6: Cross section of the fractional anisotropy of the diffusion tensor estimated from

the DT-MRI, on a grey scale where white correspond toFA = 1 (white matter) and black

correspond toFA = 0 (grey matter).

The diffusion tensor was reconstructed using LS on the logarithmic version of (9.1) by using

the MATLAB functiondwi2tensor[14] (Figure 9.6).

9.2.3.2 Brain conductivity tensor

The DT was interpolated in the center of each tetrahedral element of the brain mesh and then

the linear relationship between the CT and DT was applied. Thus, the DT coefficientsTij , for

i, j = 1, 2, 3 andj < i, defined in the regular grid of the MRI voxels, were interpolated using

B-splines and extrapolated at the center of the brain tetrahedra. Before the interpolation, outside

the brain the DT was set to isotropic by scaling its trace to the mean trace of the brain; after the

extrapolation, the same was done for any nonpositive definite tensor.

The conductivity tensor for the brain was estimated from the diffusion tensor assuming

that they shared eigenvectors, and that eigenvalues were proportional [173],σ/T = 0.844 ±
0.0545Ss/mm3, whereT is the diffusion tensor andσ is the conductivity tensor.

Three quantities were calculated and visualised to check the estimated conductivity ten-

sor after the linear relation: the trace, the Fractional Anisotropy (FA) (see below), and main

direction of the tensor.

The tensor trace had values around one, most between 0.9 and 1.6, with low and high val-

ues that may be caused by a mismatch from a not perfect segmentation or by an overlapping

with the CSF tissue (Figure 9.7(a)-9.7(c)). Besides, a linear relation may have yielded a con-

ductivity tensor with larger or smaller trace than the expected conductivity bounds. This was

overcome by scaling the CT trace.

The FA, that differentiates the isotropic from the anisotropic tissue,0 ≤ FA ≤ 1, was



174 Chapter 9. Influence of anisotropy for EIT of the head

(a) Surface plot (b) CS atx = 0

(c) CS aty = 0

Figure 9.7: Conductivity trace a) surface and b-c) cross section (CS) of the brain conduc-

tivity tensorσ obtained from the diffusion tensorT by the linear relationσ/T = 0.844 ±
0.0545Ss/mm3.
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computed as

FA =

√
3
2

((
D11 − T̄

)2 +
(
D22 − T̄

)2 +
(
D33 − T̄

)2

D2
11 + D2

22 + D2
33

) 1
2

, (9.2)

whereT̄ = D̄ is the mean trace or diffusivity (the bar indicates the mean) andD is the diagonal

matrix of eigenvalues (Figures 9.8(a)-9.8(f)).

The main direction of the conductivity tensor was visualised to verify that the directions

were well estimated. Thus, the main direction, given by the eigenvector corresponding to the

largest eigenvalue, was color coded based on a three-colour scale that assigned a different value

or colour for different predominant coordinates x,y, and z (0 or dark blue for isotropic tissue of

FA ≤ 0.4, 1 or light blue for x, 2 or yellow for y, and 3 or red for z). However, this colour code

is not the standard one used by the DTI community and does not verify for angles and positive

or negative direction (Figures 9.9(a)-9.9(f)).

Because the linear relation provided larger conductivity values than other tissues with

larger isotropic conductivity and the linear relation is not yet well defined within the same

tissue [90], then the trace of the conductivity tensor was scaled to be the same as in the isotropic

case (appendix E); that is, having estimated the conductivity tensorσDTI from DTI and given

the scalar isotropic conductivityσiso, the tensorσ was scaled as

σ ← 3σiso

trace(σDTI)
σDTI . (9.3)

Hence, both the eigenvector and eigenvalue ratios estimated from the DT were used and only

the trace was constrained to the isotropic trace3σiso.

9.2.3.3 Skull and scalp conductivity tensors

The skull conductivity tensorσ was approximated asσ = V DV T , whereD is a diagonal

matrix of eigenvalues (section D.4.2) or the conductivity tensor in local coordinates (section

A.2.1), andV is a matrix whose columns are the eigenvectors or a linear transformation from

the local to the global coordinates. Local coordinates were three orthonormal vectorsV =

[v1, v2, v3] wherev1 andv2 spanned a tangential plane andv3 a normal direction to the skull

surface. Eigenvectors were computed for each element of the skull by defining the normal

directionv3 from the vectorial product of two out of three edges in a triangle element on the

skull surface, and then by imposing orthonormality for the local basis{v1, v2, v3}. This defined

the eigenvectors for the skull surface; the eigenvectors for the skull volume were defined by

assigning to each tetrahedron the sameV as that of its closest surface element (Figures 9.10(a)

and 9.10(b).
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(a) Surface plot (b) CS atz = 0

(c) CS atz = 4 (d) CS atz = −4

(e) CS aty = 0 (f) CS aty = −4

Figure 9.8: a) Surface and b-f) cross sections (CS) of fraction anisotropy of the conductivity

tensor interpolated from the diffusion tensor by the linear relation in the brain finite elements.
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(a) CS atx = 0 (b) CS aty = 0 (c) CS aty = −3

(d) CS atz =0 (e) CS atz = 5 (f) CS atz = −5

Figure 9.9: Cross sections (CS) of the direction of the eigenvector with largest eigenvalue on a

tree colour scale indicating the most important direction among x (light blue, value 1), y (yellow,

value 2), z (red, 3), where isotropic conductivity (blue, zero value) was defined as having FA

less than 0.4.
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Figure 9.10: Radial eigenvector approximated for each triangular element on the skull surface as

a unit vector perpendicular to the surface element. Then tetrahedra were assigned the direction

of the closest surface element.

Eigenvalues corresponding to the two tangential directions and the normal direction,D =

diag(d1, d2, d3) = diag(dtg, dtg, d⊥), were computed by imposing a ratio tangential:normal to

the skull surface of 10:1 and by scaling the trace to the value of the isotropic trace (section E),

trace(σ) = 3σiso, then

D = diag(0.0557, 0.0557, 0.00557). (9.4)

Thus, the ratio considered here is an upper bound which has been previously considered for

studying the influence of skull anisotropy [146, 182].

The anisotropy of the scalp, whose tensor was computed as in the case of the skull, had

a ratio tangential:normal to the scalp surface of 1.5:1 that was approximated its the different

tissues and contemplated anisotropy of muscle tissue at 50KHz [77].

9.2.3.4 Conductivity values for the head model

As a summary, for the isotropic tissue CSF, the conductivity tensorσ was defined asσ =

σisodiag(1, 1, 1); for the anisotropic tissues skull, scalp, and brain, the conductivity tensor trace

was constrained to be the isotropic one as trace(σ) = 3σiso (table 9.1). Thus, the trace of the

CT in the head was the same for each tissue type (Figures 9.11(a)-9.11(c)).

The isotropic conductivity values used were selected from [77] corresponding to50HKz

that yielded the largest scalp voltages for epilepsy [44]: brain0.30, CSF1.79, skull 0.039, and

scalp0.44Sm−1 (Figure 9.5(c), Table 9.1).
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Table 9.1: Tissues isotropic valueσiso and tangential:normal conductivity ratio such that

trace(σ) = 3σiso.

tissue σiso tg:normal

grey matter 0.30 DTI

white matter 0.30 DTI

skull 0.039 10:1

scalp 0.44 1.5:1

CSF 1.79 1:1

(a) Transverse view (b) Coronal view (c) Sagittal view

Figure 9.11: Three cross sections of the conductivity tensor trace for all head.
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Figure 9.12: Electrode positions.

9.2.4 Forward solution

The voltage was solved everywhere using a modified version of 3D-EIDORS [140], piecewise

linear for the voltages and constant for the conductivity, that models anisotropic media by ac-

counting for a general tensor in the main compartment of the system matrix [1].

The 31-electrode position and protocol previously used at the UCL group [15] was im-

plemented as given in section 5.2.5.2. Electrodes were approximating by using two triangle

surface elements per electrode (Figure 9.12). The contact impedance accounting for skin and

electrode impedance was set to1KΩ which is of the order of the measured values on human

scalp [115]. The injected current was set to 5mA.

9.2.5 Inverse problem

9.2.5.1 The linear inverse problem

Scalar reconstruction of relative difference data (C.2), simulated with both the isotropic and

anisotropic model, was solved by using Tikhonov as the inversion method and the GCV and L-

curve as the regularisation parameter selection for a range of twenty regularisation parameters

(chapter 5). Because the error corresponded to modelling errors, the selection of the regular-

isation parameter was not expected to converge. Thus, when the GCV did not converge, an

optimum parameter was selected by approximating the corner of the L-curve. The reconstruc-

tion was constrained to the brain which reduced the Jacobian size and improved numerical

stability.

In the isotropic case, as in chapters 5 and 6, the conductivity in the kth-finite element was

represented asσk = βkdiag(1, 1, 1), whereβk is a multiple scalar to the unit matrix. A change

of conductivity, that leaves the conductivity isotropic,δσ = δβdiag(1, 1, 1), yields a change in
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voltageδV which can be represented by the linear relation [140]

δV = −
∫

Ωk

δβ(∇u)T∇u∗. (9.5)

Let V be one of the measurements on the scalp electrodes, then the Jacobian row,Jk for k =

1, . . . , n wheren is the number of elements, that relates that measurement to the elementΩk is

given by (3.13)

Jk =
δV

δβ
= −

∫

Ωk

(∇u)T∇u∗ = −
∫

Ωk

3∑

i=1

(∇u)i(∇u∗)i. (9.6)

In the anisotropic case,σ is a general tensor, yet, here, only a perturbation of the tensor that

leaves the eigenvectors and eigenvalue ratios unchanged was considered. Letβ be a multiple

scalar to the tensor, such thatσ = βσ0, wereσ0 is a known tensor withdet(σ0) = 1. Then,

based on the Jacobian for a multiple scalar to an isotropic tensor (9.6), a change of conductivity,

δσ = (δβ)σ0, was related to a change in voltageδV as

δV = −
∫

Ωk

δβ(∇u)T σ0∇u∗. (9.7)

Hence, the Jacobian entryJk that relates the measurementV to the elementΩk is given by

Jk =
δV

δβ
= −

3∑

i=1

3∑

j=1

(∇u)i(σ0)ij(∇u∗)j , (9.8)

which corresponds to the tensor product< ∇u,∇u∗ >σ0 (A.9). In fact, by assigningσ0 =

diag(1, 1, 1), one recovers the isotropic case.

The anisotropic Jacobian is different to the isotropic one, not only in the tensor product of

the electrical fields given byσ0, but in the voltagesu andu∗ obtained by solving the forward

problem for an anisotropic conductivity referenceσref. Previous to the inversion of the Jacobian,

it was row normalised (section C.3) by providing a reference voltageF (σref) whereσref was the

reference conductivity.

9.2.6 Comparison of the forward solutions

First, the qualitative effects of anisotropy of the skull and white matter were studied separately

for meaningless conductivity values, and then the global effect was analysed for a realistic

conductivity model.

9.2.6.1 Qualitative comparison

To study the effect of the anisotropy of the skull, the anisotropic tensor for the skull (section

9.2.3.3) was scaled to have the same trace as the isotropic one, and the rest of the head was set

to isotropic conductivityσ = diag(1, 1, 1). The current density norm

‖J‖ = ‖σE‖ (9.9)
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for this model and the corresponding one for the isotropic model were compared. Similarly, the

effect of anisotropy of white matter (section 9.2.3.2) was modelled.

9.2.6.2 Quantitative comparison

The isotropic and anisotropic models with the conductivity parameters from table 9.1 were com-

pared in terms of the current density norm, the percentage voltage error in the domain and at the

boundary by neglecting anisotropy, the absolute voltage difference for the inclusive conductiv-

ity perturbation in the anisotropic model and the reference conductivity in both the isotropic and

anisotropic models, and the relative difference between the voltages for the reference conduc-

tivity and an inclusive conductivity perturbation for both the isotropic and anisotropic models.

9.2.7 Comparison of the reconstructed images

Three cases were considered for linear image reconstruction: i) data simulated with the isotropic

model and scalar reconstruction for isotropic conductivity to test the inversion and set a bound

for the best possible reconstruction, ii) data simulated with the anisotropic model and scalar

reconstruction assuming isotropic conductivity to test the error by neglecting anisotropy, and iii)

data simulated with the anisotropic model and scalar reconstruction for anisotropic conductivity

to test the proposed method for recovering a multiple scalar to a general tensor. Images were

visualised and compared in terms of the localisation error

LE = ‖rrec− r‖ (9.10)

wherer was the location of the simulated conductivity change andrrec was the location of the

maximum peak near the region of interest of the reconstructed image. Thus, artefacts outside

the region of interest, mainly near the surface of the brain, were not considered in defining the

maximum peak. The location of the peak in the reconstructed images was obtained by manual

selection of the coordinates in a 3D image created with the MayaVi visualisation toolkit [142].

The procedure was to smooth the reconstructed image, find the peak near the RoI by using a

cross section view in three orthogonal directions, and maximisation of the image till the peak

could be accurately selected.

In addition to the LE, images of the simulated and reconstructed conductivity changes

were displayed as cross sections for orthonormal and sagittal views at the simulated locations

and an isosurface 3D image for comparing artefacts in the whole brain. Images corresponding to

simulated conductivity increase were displayed for a positive range only not showing negative

values, to simplify the comparison.
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9.2.8 Simulation of conductivity changes

A change in conductivity was simulated by multiplying the tensorσ by a scalarβ > 1 for an in-

crease in conductivity andβ < 1 for a decrease in conductivity. Hence, it was assumed that the

tensor structure did not change and simulated conductivity changes were placed in the grey mat-

ter. Eight simulations were done: four in the occipital lobe where one was the only simulation

with the isotropic model and other one resembled stimulation of the visual cortex; two resem-

bling epilepsy changes [44], one in the temporal lobe and one in the hippocampus; and two

in the parietal and temporal lobes. In the occipital lobe (location A, Figures 9.13(a)-9.13(b)),

three spherical conductivity changes of 35mm diameter and one of 17mm were simulated, three

of them of10% conductivity increase, and other of1% increase simulating stimulation of the

visual cortex. A10% conductivity decrease located in the temporal lobe (location B, Figure

9.13(c)-9.13(e)) was simulated as a disc of 25mm radius and 10mm heigh, of 18cc (Figures

9.31(a),9.31(b),9.31(d)). A10% conductivity decrease located in the hippocampus (location

C, Figures 9.13(f)-9.13(c)) was simulated as a cylinder of 30mm length and 5.5mm radius,

of 2.5cc (Figures 9.32(a),9.32(b),9.32(d)). Another two locations were chosen surrounded by

white matter (locations D and E, Figures 9.14(a)-9.14(d)).

9.3 Results

9.3.1 Preliminaries: Voltage and current density in an anisotropic domain

9.3.1.1 Cubic model

In the isotropic domain, the voltage (Figure 9.15(a)) and current density norm (Figure 9.15(c))

propagated uniformly throughout the domain. The potential decreased uniformly, forming

semicircular isopotential curves centred at the injection point. In the anisotropic domain, with

the x-direction as preference for the conductivity, the current preferred to flow in the x-direction

rather than in the y or z-direction, where the isopotential curves were parallel to the x-axis (Fig-

ures 9.15(c) and 9.15(d)) as was expected from an increase of the conductivity in the x-direction

(Figure 9.16).

The electric field at each point was directed towards parts of the domain of lowest poten-

tial. In the isotropic domain, these pointed perpendicular to the semicircular isopotential curves

(Figure 9.17(a)); in the anisotropic domain, these pointed perpendicular to the x-axis (Figure

9.17(c)). The current density vector, which depends on the electric field orientation and pre-

ferred conductivity direction, in the isotropic domain, coincided with the electric field flowing

uniformly to points of lowest voltage, equally to high values in x and the y-direction (Figure

9.17(b)); in the anisotropic domain, it pointed to high values of y and low values of x (Figure
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(a) Location A (b) Location A

(c) Location B, hippocampus (d) Location B (e) Location B

(f) Location C, hippocampus (g) Location C (h) Location C

Figure 9.13: Locations of the simulated conductivity changes, placed in the grey matter, within

FA in the background, in A) the occipital lobe to simulate stimulation of the visual cortex, and

in B) the temporal lobe and C) the hippocampus to simulate changes in epilepsy.
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(a) Location D (b) Location D

(c) Location E (d) Location E

Figure 9.14: (Continuation) Locations of the simulated conductivity changes, placed in the grey

matter, within FA in the background.
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Figure 9.15: Comparison of the surface potential (left) and current density norm (right) cross

section (CS) atz = 0.08 (right), for a-b) an isotropic domain withσ = diag(1, 1, 1) and c-d)

an anisotropic domain withσ = diag(10, 1, 1), for a current injection with value one at(0, 0, 0)

and zero elsewhere (current perpendicular to ones), using the nodal based conductivity model.
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Figure 9.16: Sketch of the expected isopotential voltage in 2D for i) an isotropic domain and ii)

anisotropic domain with ten times higher conductivity in the x-direction. While in the isotropic

domain the isopotential is expected to be a semicircle centered at the injection point, in the

anisotropic domain it is expected to become parallel to the main direction.

9.17(d)). Since the direction of the current density vector depends on the potential, and is not

straight forwardly related to the conductivity tensor, it was not used for comparing isotropic and

anisotropic domains; instead the current density norm was used.

9.3.1.2 Concentric sphere

In the isotropic domain, the current decreased uniformly from the injection point (Figures

9.19(a) and 9.19(b)). In the anisotropic domain, the current preferred to flow tangentially

to the surface of the middle sphere with a significant decrease of current that flows into the

inner sphere (Figures 9.19(a)-9.19(d)). In fact, a large difference between the isotropic and

anisotropic domains was due to the thickness of the interior shell, and so a lesser effect is ex-

pected for the skull.

9.3.2 Qualitative comparison of the forward isotropic and anisotropic solutions

9.3.2.1 Effect of anisotropy of the skull

Modelling the skull with a conductivity ratio tangential:normal of 10:1 reduced the current

density norm by half after crossing the skull layer (Figure 9.20(b)) while, in the isotropic model,

it propagated uniformly (Figure 9.20(a)). The most relevant effect was to reduce the amount of

current that penetrated into the brain; the field distribution still formed semicircles with larger

radii after crossing the skull.

9.3.2.2 Effect of anisotropy of the white matter

The anisotropy of the white matter changed the field distribution in the brain where the cur-

rent propagated along the white matter fibres which were parallel to the current injection and

was almost zero for those fibres that were aligned perpendicular to the injection field direction

(Figures 9.21(b)-9.21(e)).
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Figure 9.17: Cross sections, atz = 0.08, of the electrical fieldE = −∇u (left) and normalised

current densityJ = σE (right), for a-b) an isotropic domain withσ = diag(1, 1, 1), and c-d)

an anisotropic domain withσ = diag(10, 1, 1).
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(a) Concentric sphere geometry
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(b) Concentric sphere mesh

Figure 9.18: Concentric three spheres model with interior shell radius0.4 ≤ r ≤ 0.6, where a)

the middle sphere (red) was anisotropic and inner and outer shells (blue) were isotropic, and b)

mesh.

Table 9.2: Percentage current density norm at each shell, e.g.100
∑

i∈shell‖Ji‖/
∑

i∈head‖Ji‖,
wherei corresponded to the tetrahedral elements, for both the isotropic and anisotropic models.

model scalp skull CSF brain

ISO 42.8 3.9 31.3 22

ANI 64.4 4 18.2 13.4

ANI/ISO 1.5 1 0.6 0.6

9.3.3 Quantitative comparison of the forward isotropic and anisotropic solutions

9.3.3.1 Comparison of the forward solutions for the conductivity reference

Modelling realistic conductivity parameters for the anisotropic head model (table 9.1), the

current flowed tangential to the scalp and skull surfaces (Figure 9.22(b)) with respect to the

isotropic model (Figure 9.22(a)), leading to a reduction by two of the total current that flows

into the brain (table 9.2, Figures 9.22(c)-9.22(d)). The field distribution in the anisotropic brain

indicated that the preferred direction was along the white matter fibres.

The effect of anisotropy on the voltage was the same effect as on the current norm (Figures

9.23(a)-9.23(b)). Thus, neglecting anisotropy led to a relative voltage error at the boundary of

53% (table 9.3, Figure 9.23(c)).

Modelling a local conductivity change of10% (Figure 9.24) in the occipital part of the
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(a) Current density norm (b) Current density norm (contour map)

(c) Current density norm (d) Current density norm (countor map)

Figure 9.19: Cross section (left), atz = 0, and contour plot (right), for the current den-

sity of a-b) an isotropic domain withσ = diag(1, 1, 1), and c-d) an anisotropic sphere with

σ = V DV T , whereD = diag(1.493, 1.493, 0.15) such that trace(D) = 3, in between in-

ner and outer isotropic concentric spheres, for a nodal based conductivity and current pattern

perpendicular to one.



9.3. Results 191

(a) ‖J‖ in the isotropic head model (b) ‖J‖ in the head model with anisotropic skull

Figure 9.20: Current density norm for the a) isotropic head model withσ = diag(1, 1, 1)

everywhere and b) head model with anisotropic skull withσ = V DV T with eigenvaluesD =

diag(1.43, 1.43, 0.14), such that trace(σ) = 3 for both the isotropic and the anisotropic head

model.

brain led to a change of0.0124% on the boundary voltage mean for the anisotropic model

(Figure 9.26(a)), and a change of0.06% for the isotropic model (Figure 9.26(b)); the boundary

voltages mean was more than five times smaller for the anisotropic model (table 9.3).

The absolute difference, for one current injection, between the voltages with and without

perturbation in the domain produced a local voltage change where the conductivity perturbation

was simulated (Figure 9.25(a)); however, the absolute difference between the voltages corre-

sponding to a perturbation in the anisotropic model and the reference in the isotropic model

did not produce any local voltage change (Figure 9.25(b)). An important conclusion is that

absolute imaging may be not possible without modelling anisotropy since the absolute voltage

difference for a local perturbation was significantly smaller than the absolute difference between

both models.

9.3.4 Effect of anisotropy on the linear image reconstruction of difference data

First, the reconstruction procedure was shown for a simulated change in the isotropic model,

and then, the data was simulated in the anisotropic model and the comparison between the

reconstructed images with the isotropic and anisotropic models was done (table 9.4).

9.3.4.1 Isotropic data and scalar isotropic reconstruction

As an example of the linear reconstruction procedure using Tikhonov and the GCV or the L-

curve, the functionals used in chapter 5 are shown for the case of perturbation in the occipital
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(a) CS atz = 0 with larger scale (b) CS atz = 0

(c) CS atz = −5 (d) CS atx = 0 (e) CS aty = 0

Figure 9.21: Cross sections (CS) of the current density norm‖J‖ for head model with

anisotropic tensor for the brain estimated from DTI and scaled to trace(σ) = 3, where a)

covers the whole range of values and b-e) covers a small range between two and three order of

magnitude less for the current decrease because of the volume effect.

Table 9.3: Summary of scalp voltage comparisons between the isotropic and anisotropic models

with and without a perturbation in the occipital lobe. First row - absolute relative difference

(RD) between the anisotropic and isotropic boundary voltages for the reference conductivity:

RD = 100|(F (σani) − F (σiso))/F (σani)|, i.e. the error by neglecting anisotropy. Remaining

rows - the relative difference between the boundary voltages with and without a conductivity

perturbation,RD = 100|(F (σinh) − F (σref))/F (σref)|, giving the mean (R̄D) and standard

error (SE), for the isotropic model and the anisotropic models, for a local perturbation where

location, % change and size are specified.

location change size(mm) models R̄D SE(RD)

- - - ANI(REF) & ISO(REF) 53 0.32

occipital 10 35 ISO(INH) & ISO(REF) 0.061 0.004

occipital 10 35 ANI(INH) & ANI(REF) 0.0124 0.0001
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(a) Current norm for the isotropic head model (b) Current norm for the anisotropic head model

(c) Current norm contours for the isotropic model (d) Current norm contours for the anisotropic model

Figure 9.22: Current norm cross section for the a) isotropic and b) anisotropic head models.

c-d) Same as a-b) but as contour maps.
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(a) Isotropic head model (b) Anisotropic head model
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(c) Measurement voltage percentage difference

Figure 9.23: Cross sections of the voltage for the a) isotropic and b) anisotropic models, and

c) Measurement voltage percentage error produced by considering the isotropic instead of the

anisotropic model,100|(V ani− V iso)/V ani| whereV are the simulated measurement voltages

with both models.
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Figure 9.24: Conductivity trace in the anisotropic model for a local perturbation of10% in the

occipital lobe.

(a) CS|uinh − uani| (b) CS|uinh − uiso|

Figure 9.25: Cross section (CS) (z = −4) of the absolute voltage difference between the a)

anisotropic models with and without perturbation, and b) anisotropic with perturbation and

isotropic model, for one current injection.
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Table 9.4: Results of the linear reconstruction of difference data for the isotropic (ISO) and

anisotropic (ANI) data and models, for simulated conductivity changes in different locations,

in terms of the localisation error (LE) and maximum reconstructed conductivity value (peak).

Also the size (1diameter, high) in millimeters is given, where the size of the head of the y-

direction was 218mm.2In this data there were two maximums. The LE was15 ± 3 for the

isotropic reconstruction and13± 2 for the anisotropic reconstruction.

SIM location change % size(mm) data model LE(mm) % peak

1 A 10 35 ISO ISO 8 3.7

2 A 10 35 ANI ISO 8 0.7

2 A 10 35 ANI ANI 8 1.3

3 A 10 17 ANI ISO 9 0.1

3 A 10 17 ANI ANI 9 0.6

4 A 1 35 ANI ISO 9 0.17

4 A 1 35 ANI ANI 24 0.55

5 B -10 150,10 ANI ISO 20 -0.6

5 B -10 50,10 ANI ANI 16 -8.5

6 C -10 6,30 ANI ISO 24 -0.13

6 C -10 6,30 ANI ANI 7 -0.47

7 D 10 17 ANI ISO 2 11,25 0.15,0.16

7 D 10 17 ANI ANI 13 0.7

8 E 10 17 ANI ISO 12 0.14

8 E 10 17 ANI ANI 12 0.41
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(a) Relative boundary voltages in the isotropic

model
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(b) Percentage change on scalp voltages for a per-

turbation in the brain (isotropic model)

Figure 9.26: Percentage change of scalp voltages for a local perturbation in the brain of10% in

the a) anisotropic model, b) isotropic model. Thus a local change of conductivity of10% led to

0.02% change on the scalp for the anisotropic case and0.1% in the isotropic case.

cortex, simulating the data and reconstructing it with the isotropic head model (Figures 9.28(a)-

9.28(b)), for which the L-curve provided similar result as the GCV, so they seemed to converge

also for the shell model even in absence of white noise.

The maximum reconstructed peak was4% where the simulated (Figures 9.27(d)-9.27(f))

was 10% (Figures 9.28(c)-9.28(e)); the decrease may be due to the effect of regularisation.

The localisation error was 8mm, which was set as a lower bound from the ill-posedness and

regularisation.

9.3.4.2 Reconstruction of data simulated with the anisotropic model

Neglecting anisotropy did not have an effect in terms of localisation error, for conductivity

changes in the occipital lobe, but a slight decrease in image quality was found when the spher-

ical perturbation diameter was reduced from 35 (SIM 2, Figures 9.28(f)-9.28(h)) to 17mm di-

ameter (SIM 3, Figures 9.29(d)-9.29(f)), and it worsened significantly when the conductivity

change was reduced from 10 to 1% (SIM 4) which simulated stimulation of the visual cortex

(SIM 4, Figures 9.30(d)-9.30(f)). For the epilepsy changes, a localisation error of 20mm was

found in the temporal lobe (SIM 5, Figures 9.31(d)-9.31(f)), which may be due to shape of the

simulated change, and 24 mm in the hippocampus (Figures 9.32(d)-9.32(f)), which was deep in

the brain. For the other locations, surrounded by white matter and deep in the brain, the errors

were 11-13mm and it had a significant effect in image quality (Figures 9.33(d)-9.33(f) for SIM

7, Figures 9.34(d)-9.34(f) for SIM 8). In general neglecting anisotropy affected image quality

with the emergence of artefacts with higher change outside the region of interest mainly on the



198 Chapter 9. Influence of anisotropy for EIT of the head

(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS of the reconstructed change (e) CS of the reconstructed change(f) Isosurface of the reconstructed

change

Figure 9.27: (SIM 1, location A) Cross sections (CS) (column 1 and 2) and isosurface (col-

umn 3) for linear reconstruction of isotropic data with d-f) an isotropic model for a-c) a local

perturbation of10% change in conductivity and of16% diameter with respect to head size.
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captionL-curve and GCV for the isotropic data and scalar isotropic reconstruction.
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brain surface.

Modelling anisotropy in the linear reconstruction with the proposed method led to an im-

provement in the localisation error, 8-16mm, and in image quality with reduction of spurious

artefacts (Figures: SIM 2, 9.28(i)-9.28(k); SIM 3, 9.29(g)-9.29(i); SIM 5, 9.31(g)-9.31(i); SIM

6, 9.32(g)-9.32(i); SIM 7, 9.33(g)-9.33(i); SIM 8, 9.34(g)-9.34(i)), except for the simulation

in the visual cortex of 1% conductivity change with localisation error of 24mm, which may

be due to the lower sensitivity in the anisotropic model to smaller changes (SIM 9, Figures

9.30(g)-9.30(i)).

In summary, neglecting anisotropy led to a localisation error up to 24mm and worsened

image quality while modelling anisotropy in the linear inverse problem yielded lower localisa-

tion error and good image quality; the LE was15 ± 3mm for the isotropic reconstruction and

13 ± 2mm for the anisotropic reconstruction. For the epilepsy changes, modelling anisotropy

was essential to obtain good images and reduce by three times the localisation error; on the

other hand, for visual stimulation there was not significant improvement.

9.4 Discussion

The effect of modelling anisotropy on the forward and inverse solutions for EIT of brain func-

tion has been presented.

9.4.1 Summary of results

First, a qualitative comparison analysed the redistribution of fields by modelling only the

anisotropy of the skull in terms of the current norm; similarly, it was done for the white mat-

ter. Skull anisotropy had a shunting effect: the current norm decreased by two after crossing

the skull where the current preferred to flow tangential to the skull surface rather than flowing

into the brain. White matter anisotropy made the current flow through the white matter fibres

parallel to the injection and avoid grey matter and white matter fibres whose path was perpen-

dicular to the direction of current flow. Second, modelling realistic isotropic and anisotropic

models where the scalp, skull, and white matter were anisotropic led to a reduction of two for

the total current that flowed into the brain for the anisotropic model with respect to the isotropic

one. The scalp anisotropy led the current to flow tangential to the scalp, as in the case of the

skull, with an increase by two on the total current that propagates through the scalp. Neglecting

anisotropy led to fifty percent error on the boundary voltages. Simulating a local increase of

conductivity of 10% in the occipital lobe yielded a 0.0124% mean change in the boundary volt-

ages in the anisotropic model; the same conductivity change modelled in the isotropic model

yielded 0.061% mean on the boundary voltages. The absolute voltage difference, in the do-
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(c) CS of the simulated change (d) CS of the simulated change (e) Isosurface of the simulated change

(f) CS for ISO model (g) CS for ISO model (h) Isosurface for ISO model

(i) CS for ANI model (j) CS for ANI model (k) Isosurface for ANI model

Figure 9.28: (SIM 2, location A) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data with a-c) an isotropic (ISO) model and d-f) an

anisotropic (ANI) model, for a local perturbation of10% change in conductivity and of16%

diameter with respect to head size.
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(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS for ISO model (e) CS for ISO model (f) Isosurface for ISO model

(g) CS for ANI model (h) CS for ANI model (i) Isosurface for ANI model

Figure 9.29: (SIM 3, location A) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data with a-c) an isotropic (ISO) model and d-f) an

anisotropic (ANI) model, for a local perturbation of10% change in conductivity and of8%

diameter with respect to head size.
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(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS for ISO model (e) CS for ISO model (f) Isosurface for ISO model

(g) CS for ANI model (h) CS for ANI model (i) Isosurface for ANI model

Figure 9.30: (SIM 4, location A) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data with a-c) an isotropic (ISO) model and d-f)

an anisotropic (ANI) model, for a local perturbation in the occipital lobe of1% change in

conductivity and of16% diameter with respect to head size.
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(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS for ISO model (e) CS for ISO model (f) Isosurface for ISO model

(g) CS for ANI model (h) CS for ANI model (i) Isosurface for ANI model

Figure 9.31: (SIM 5, location B) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data corresponding to a-c) a simulated9% decrease

in conductivity on the temporal lobe, reconstructed with d-f) an isotropic (ISO) model and g-i)

an anisotropic (ANI) model
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(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS for ISO model (e) CS for ISO model (f) Isosurface for ISO model

(g) CS for ANI model (h) CS for ANI model (i) Isosurfaceσ = 0.8% for ANI

model

Figure 9.32: (SIM 6, location C) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data corresponding to a-c) a simulated9% decrease

in conductivity on the hippocampus, reconstructed with d-f) an isotropic (ISO) model and g-i)

an anisotropic (ANI) model
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(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS for ISO model (e) CS for ISO model (f) Isosurface for ISO model

(g) CS for ANI model (h) CS for ANI model (i) Isosurface for ANI model

Figure 9.33: (SIM 7, location D) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data with a-c) an isotropic (ISO) model and d-f) an

anisotropic (ANI) model, for a local perturbation of10% change in conductivity and of8%

diameter with respect to head size.
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(a) CS of the simulated change (b) CS of the simulated change (c) Isosurface of the simulated change

(d) CS for ISO model (e) CS for ISO model (f) Isosurface for ISO model

(g) CS for ANI model (h) CS for ANI model (i) Isosurface for ANI model

Figure 9.34: (SIM 8, location E) Cross sections (CS) (column 1 and 2) and isosurface (column

3) for linear reconstruction of anisotropic data with a-c) an isotropic (ISO) model and d-f) an

anisotropic (ANI) model, for a local perturbation of10% change in conductivity and of8%

diameter with respect to head size.
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main, corresponding to the perturbation and the reference conductivity in the anisotropic model

yielded a local voltage change while this was not the case for the difference corresponding to

the perturbation in the anisotropic model and the reference in the isotropic model. Because of

this and the fact that the voltage difference between models was significantly higher than the

effect of the perturbation, absolute imaging may be not feasible.

The effect of anisotropy on the linear reconstructed images was analysed in terms of the

localisation error, for which a lower bound of 8mm was set from the simulation and reconstruc-

tion of a conductivity change in the isotropic model; that is, the error from the ill-posedness

and regularisation. Neglecting anisotropy led to a localisation error between 8-to-24mm where

high errors occurred when the simulated change was deep in the brain or surrounded by white

matter; the largest error was for a change in the hippocampus. A simulated disc in the temporal

lobe led to a high error because of the object shape. A small increase of error was found for de-

creasing by two the diameter of the inclusion or simulating a smaller conductivity change. The

proposed Jacobian based on the anisotropic model led to an improvement of the localisation

error up to three times in the hippocampus, but generally it led to errors between 8-24mm; the

error was15± 3 for the isotropic reconstruction and13± 2 for the anisotropic reconstruction.

In terms of image quality, neglecting anisotropy led to spurious artefacts, outside the region of

interest mainly on the brain surface; modelling anisotropy led to good quality images.

9.4.2 Technical issues

The aim of this chapter was to estimate the effect of anisotropy for a realistic model, however,

some simplifications have been made. An accurate estimate of the conductivity for the different

tissues and anisotropic conductivity ratios are not available where the published conductivity

coefficients vary with the frequency and the conditions at which they are acquired. The se-

lected isotropic conductivity corresponded to published values at 50KHz [77], which yielded

the largest changes in epilepsy [44]. The conductivity ratio for the white matter was determined

from DT-MRI where the conductivity and diffusion tensors are linearly related at low frequen-

cies, that is, for frequencies no larger than 1 or 50KHz. In fact, the anisotropic tensor trace was

constrained to be equal to the isotropic trace at 50KHz. A previous study also constrained the

trace for the white matter tensor since while the conductivity and diffusion tensors are linearly

related across different tissue types, there is not a strong linear relation within the same tissue

[90]. The scalp anisotropy was approximated from the conductivity ratio tangential:normal to

the scalp surface of 1.5:1 at 50kHz, determined from the scalp tissues contemplating the muscle

anisotropy [77], which may be larger at other frequencies. The muscle conductivity was mod-

elled with a ratio 4.3:1 in [54, 55]. The skull conductivity ratio tangential:normal to the skull
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surface was chosen as 10:1 [146], which was the largest ratio discussed for the study of the

influence of anisotropy for EEG [182], so it was selected as being an upper bound of the pos-

sible conductivity ratios to analyse the largest effect of neglecting anisotropy. Besides, it was

found that the bone conductivity on the three orthogonal directions was constant up to 10KHz

[144]. Therefore, modelling different conductivity values may vary slightly the results, yet this

analysis aimed to provide relevance of the importance of anisotropy for EIT.

9.4.3 Comparison with previous results

Some results could be used to set a lower bound in the localisation error. A distortion of the

MRI at the coregistration stage may lead to errors up to 5mm, yet they can be reduced to 1mm

using specific methods [112, 170]. Also, the segmentation and boundaries extraction from the

T1-MRI had 1-2mm error [39]. A limit of accuracy was set from modelling inaccuracies which

would not be contemplated in practice. This included factors as the inhomogeneity of the skull;

for 64 electrodes and 2% noise, this led to 10mm localisation error [127].

An assessment of the head-shell model for EIT of brain function was done on simulated,

tank, and human data [11]. Localisation errors were (in millimeters), for simulated data from a

homogeneous head-shaped model 21±6 for head-shaped reconstruction and 24±10 for spheri-

cal reconstruction; for homogeneous head tank data, 13±7 for head-shaped reconstruction and

19±8 for spherical reconstruction; and for head with skull tank data, 26±8 for head-shaped re-

construction and 24±8 for spherical reconstruction. For human data, an improvement in image

quality was found. It was concluded that realistic conductivity values and accurate geometry

led to slight improvements where improvements in image quality were more significant than

localisation error and resolution.

From previous EEG results, modelling anisotropy for the skull and white matter, there

seems to be a lower bound of 10mm error from mismodelling errors and upper bound of 30%

in the forward solution and 18mm localisation error. The results presented here led to 50% on

the forward solution, which suggests a significant influence of modelling the anisotropy of the

scalp. While here the nonlinear problem has not been attempted, from the error on the forward

solution the nonlinear inverse solution may be not possible. Linear reconstruction neglecting

anisotropy led here to 24mm error, which compared with the 13-26mm error from the EIT

studies on tank data, suggests that for linear reconstruction only for conductivity changes deep

in the brain modelling anisotropy will improve results if mismodelling errors of the electrodes

accounted in the EIT real studies are solved [11].
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9.4.4 Conclusion and further work

In conclusion, neglecting anisotropy led to up to 50% error in the boundary voltages, which

suggests that absolute reconstruction may not be feasible. The influence of anisotropy of the

scalp and skull was apparent in the reduction by two of the total current flowing into the brain.

For linear reconstruction, neglecting anisotropy led to an increase of localisation error by three

times, up to 24 mm for inclusions deep in the brain, yet no difference was found for inclusions

in the occipital cortex. Modelling anisotropy with the proposed method led to a significant

improvement in the localisation error for some of the simulations and small improvement over

all; it led to a significant improvement in image quality with large reduction of artefacts. Thus,

modelling anisotropy is required to obtain an accurate forward solution and for absolute recon-

struction, however, by neglecting anisotropy it was still possible to reconstruct linear changes

of time difference data with an error of 24mm, so modelling anisotropy appears to be necessary

for obtaining good quality images and low localisation error, especially if the imaged changes

are deep in white matter. A more significant influence is likely to be for absolute imaging, for

which the methodology proposed in chapter 9 for the recovery of the three eigenvalues could be

applied here for the case of a wrong conductivity ratio estimate for the scalp, skull, and white

matter. Further analysis of this constraint on real phantoms with anisotropic structure would set

the relevance of anisotropy for many other EIT applications.
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Conclusions

10.1 Introduction

10.1.1 EIT of brain function

EIT may be applied for imaging brain function where changes of scalp impedance are related

to changes of local brain impedance associated with slow neuronal activity like cell swelling

during epilepsy and changes of blood volume during normal brain activity. EIT has the potential

to become a technique for localising epileptic foci before surgery since it could image deep in

the brain and be plugged into continuous recording in the telemetry unit [74]. Besides, EIT is

portable and noninvasive, which make it highly attractive in comparison to the leading imaging

techniques.

A major drawback of measuring scalp impedance is its low signal-to-noise ratio due to the

shunting effect of the skull and the experimental sources of error. Local impedance changes

in the brain related to slow brain activity were between2-to-12% [42, 157, 41, 143, 76], and a

decrease of one or two orders of magnitude is expected on scalp changes because of the atten-

uation by the skull [78]. Experimental errors have been classified in random noise, systematic

changes, and physiological noise; as a general figure, noise could be decrease up to1% [74,

Chapter 1].

The main drawback of EIT is its low spatial resolution due to the fact that the image

reconstruction problem is not well-posed, being highly sensitive to modelling and experimental

errors, and data sampling is usually incomplete. In fact, the isotropic EIT problem is unique

only if the boundary shape is perfectly known [105]. Other parameters that affect the solution

are the contact impedance of the skin-electrode interface, modelling errors, and anisotropy. For

example, one may recover simultaneously the electrode contact impedance and conductivity

[175, 69], and boundary shape and conductivity [104, 160]. Also, modelling of errors has

decreased the solution error [69].
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In most clinical applications the approach to reduce some of the systematic errors has

been linear reconstruction of difference data, that is, recovering a conductivity change from an

impedance change, instead of doing static imaging where one aims to recover absolute conduc-

tivity.

In the last few years, some of those parameters have been modelled in studies into EIT

of brain function. Some studies have shown the importance of an accurate model of the head,

with representation in the model of scalp, skull, CSF, and brain, [167, 108, 16, 11, 170]. More-

over, electrode positions can be accurately obtained with a precision of a millimetre using pho-

togrammetry [147]. However, modelling of the errors, contact impedance for each electrode,

and anisotropy have not been modelled yet.

It is well known that human tissues like bone, muscle, and brain white matter are

anisotropic, however, most medical applications have hitherto neglected anisotropy and its mod-

elling has been suggested for medical [54, 55] and geological [132] applications. Avoiding

anisotropy of both white matter and skull has been found to lead to errors of about10% on

EEG forward solution and to be significantly relevant for inverse source localisation [182, 181],

where the white matter anisotropic conductivity tensor was estimated from diffusion tensor

magnetic resonance imaging [66][172, Chapter 5].

10.1.2 Forward and inverse problem theory

Solving the forward problem implies obtaining the predicted boundary voltages for a conductiv-

ity estimate, modelled by Maxwell’s equations, which at low frequency are given by Laplace’s

equation, and Neumann boundary conditions, which are modelled by the CEM, taken on ac-

count the electrode contact impedance, with an error of less than0.1%. FEM provides a numer-

ical formulation of the FP for general irregular geometries; besides, it can model anisotropy.

This leads to a linear system of equations for the voltage and current injection, which can be

efficiently solved by using PCG and multigrid.

The conductivity inverse problem has a unique solution for isotropic media [92, 93, 165];

however, uniqueness does not hold for anisotropic media [101] unless extra information is pro-

vided [104], where uniqueness can be recovered for some constraints: one eigenvalue and a

scalar multiple to the tensor. The inverse problem is solved by minimising the difference be-

tween the experimental and the predicted data, and since it is ill-posed, as given by Hadamard’s

conditions, by applying some type of regularisation. A common choice is to assume that the

solution follows a Gaussian distribution, which corresponds to Tikhonov regularisation. Recon-

struction methods can be divided in linear and nonlinear and direct and iterative. Linear direct

methods like TSVD and Tikhonov and nonlinear iterative like Newton’s type are related to this
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thesis.

Optimising the linear inverse problem requires selecting the regularisation parameter,

which controls the amount of regularisation, and modelling the covariance of the noise of

the data. The regularisation parameter can be chosen by several methods, which guarantee

an optimum solution under a white noise assumption; otherwise, it is suggested to model the

covariance of the noise. Unfortunately, EIT data is not white since measurements can have

different variance and be correlated. In addition, estimating covariance from a low number of

measurements leads to ill-posed covariance matrices. Some methods have dealt with modelling

the covariance matrix [129, 130, 131, 21], and with rank-deficient covariance matrices [187].

An inverse solution that includes explicitly the covariance matrix and avoids its inversion is the

Generalised-Tikhonov solution (4.51), which was the preferred solution in this work.

10.2 Summary of findings

The work in this thesis had four main goals. The first goal was to optimise linear reconstruction

for EIT of brain function (chapter 5) by selecting an optimum regularisation parameter using

Generalised Tikhonov reconstruction and four standard methods: L-Curve (LC), Generalised

Cross Validation (GCV), Discrepancy Principle (DP), and Unbiased Predictive Risk Estimator

(UPRE); and modelling a general covariance of the noise for simulated data and diagonal co-

variance for neonatal and tank data. Methods were tested on simulated data, saline head-shaped

tank data with Perspex as test object, and scalp neonatal data during evoked response. The sec-

ond goal was to apply Principal Component Analysis (PCA) on the raw data by projecting the

data onto the first eigenvectors of the covariance (chapter 6). Goals three and four modelled a

FEM forward solution for anisotropic media, which was, first, validated by its comparison with

an analytical solution (chapter 7), were presenting and verifying numerically the uniqueness of

a constrained anisotropic inverse solution (chapter 8), and studying the influence of modelling

anisotropy of the scalp, skull, and brain white matter on the forward problem and on a linear

reconstructed solution of a scalar multiple to a general tensor (chapter 7).

Selecting the truncation level minimised the solution error on simulated data, but no sig-

nificant differences were found between the four selection methods. Modelling a general co-

variance of the noise significantly decreased the solution error. On tank data, LC and GCV were

equally good while DP and UPRE failed to converge; modelling a diagonal covariance did not

yield significant differences. On real data, the high variability among methods did not lead to

significant differences. Overall, the LC and GCV with modelling the covariance were best, and

results encourage a better estimation of the covariance, which proved to improve image quality
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for a good estimate of the covariance. The recommendation for EIT of brain function is to

apply LC or GCV and a fixed truncation level chosen experimentally when methods failed to

converge.

Applying PCA, where time frames were considered as variables, significantly improved

the signal-to-noise ratio by fifteen decibels on both tank and neonatal data. From these results,

it is advised to apply PCA instead of averaging across repetitive experiments.

The FEM solution for Laplace’s equation in an anisotropic medium was validated by study-

ing its convergence to an analytical solution for the case of a cubic domain with a Dirichlet

boundary condition. Convergence was verified by showing that the FEM error norm decreased

proportionally to the tetrahedral size.

The feasibility of the recovery of a constrained anisotropic tensor with known eigenvectors

was verified numerically by looking at the rank of the Jacobian and solving numerical examples

for simple geometries with smooth eigenvalues and a general tensor whose eigenvectors varied

smoothly throughout the domain. The practical relevance of this constraint is clear for medical

applications where muscle, bone tissue, and white matter have a preferred direction for cur-

rent flow, which can be approximated from a structural imaging modality like MRI or directly

estimated with DT-MRI.

The effect of modelling anisotropy of the scalp, skull, and brain white matter on the for-

ward and a linearised inverse solution was studied using a realistic FEM model of the head that

distinguished four tissue types: scalp, skull, CSF, and brain, and approximated anisotropy for

the skull and scalp from the geometrical boundaries and estimated anisotropy for the brain from

DT-MRI. Neglecting anisotropy led to 50% error in the boundary voltages, which suggests that

absolute reconstruction may not be feasible. The influence of anisotropy of the scalp and skull

was apparent in the reduction by two of the total current flowing into the brain and by six on the

boundary voltages for a simulated conductivity change on the occipital cortex in comparison

with the equivalent isotropic model. For linear reconstruction, neglecting anisotropy led to an

increase of localisation error by three times, up to 24 mm for inclusions deep in the brain, yet

no difference was found for inclusions in the occipital cortex. Modelling anisotropy with the

proposed method led to a significant improvement in the localisation error and in image quality

with large reduction of artefacts. Thus, modelling anisotropy is required to obtain an accurate

forward solution and for absolute reconstruction, however, by neglecting anisotropy it was still

possible to reconstruct linear changes of time difference data with an error of 24mm, so while

linear imaging is possible without modelling anisotropy, it is essential to obtain good quality

images and low localisation error.
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10.3 Suggestions for further research

As has been discussed, the EIT problem is highly sensitive to noise and parameters like bound-

ary shape, electrode position, and electrode contact impedance. In addition, EIT of brain func-

tion boundary data has a low SNR because of the shunting effect by the skull.

The nonlinear reconstruction problem for EIT in general, from my point of view, is un-

likely to be successful unless those parameters are accurately known; therefore, a possible ap-

proach could be to recover simultaneously with the conductivity all parameters that cannot be

measured.

The linear reconstruction problem has been also verified to improved significantly when

the noise was modelled. As with the nonlinear case, the uncertain parameters could be recovered

to optimise the solution.

As for the preprocessing stage, increasing the SNR has been possible for neonatal data even

in cases when the noise was larger than the signal of interest. Further research for discerning

the signal of interest, in adults where the effect of the skull is larger than on neonates, and

improving modelling of the covariance may be relevant.

Positive results found here for the recovery of a conductivity tensor with known eigenvec-

tors suggest numerical uniqueness when eigenvectors are provided and encourage theorists to

study this constraint. In addition, further study needs to be applied to test this constraint for real

phantoms with anisotropic structure for which the eigenvector orientation can be approximately

estimated.

Modelling anisotropy for the head has been shown to influence significantly the forward

solution, however, the influence on the nonlinear reconstruction has not been assessed here.

Therefore, analysis of its influence is desirable; in particular, to apply the proposed methodol-

ogy for the recovery of the three eigenvalues of the conductivity tensor, for the case of a wrong

conductivity ratio estimate for the scalp, skull, and white matter. In fact, testing this constraint

for real data on phantoms with anisotropic structure will set the importance of this constraint

for many other EIT applications.

Finally, I have developed three main improvements for image reconstruction in EIT an

automatic method for regularization in linear reconstruction, use of PCA to improve signal to

noise, and the use of anisotropy in image reconstruction. Although I have undertaken validation

on simulated, tank and example clinical data, their true advantages will only become apparent

when used in earnest in clinical studies. They will all be used in studies in our research group

into EIT in epilepsy, acute stroke, and functional activity, and I look forward to seeing how they

can improve the image quality under these real-life conditions.
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Miscellaneous mathematical definitions

A.1 Vector spaces

Let f be a function, defined in the domainΩ ∈ Rn, such thatf : Ω 7→ R.

A.1.1 Convex function

A functionf is convex in a domainΩ if for any two pointsx andy in the domain and a parameter

t ∈ [0, 1] (http://en.wikipedia.org/wiki/Convexfunction)

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y). (A.1)

Thus,f must be continuous and differentiable everywhere, but at some points. As a test for

convexity, if the second derivative off is positive, thenf is strictly convex.

A.1.2 Lipschitz continuity

A functionf is Lipschitz continuous if there is a constantC ≥ 0 such that

|f(x)− f(y)| ≤ C|x− y|, (A.2)

where the Lipschitz constantC provides the largest value of the first derivative for functions

with bounded first derivative.

A.1.3 Lebesgue integrable

The set of functions are said to be Lebesgue integrable,Lp(Ω), if their Lebesgue integral is

finite, that is, ∫

Ω
|f(x)p|dx < ∞, (A.3)

wherep ∈ [1,∞).

A.1.4 Generalised weak derivative

Let f be a generalised function, including distributions, the weak derivativeDα, whereα =

(α1, . . . , αn) and|α| = α1 + . . . + αn ≤ k with k ∈ Z+, is defined as
∫

ω
(Dαf(x))ψ(x)dx = (−1)|α|

∫

Ω
f(x)(Dαψ(x))dx, (A.4)
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where all derivatives ofψ are continuous.

A.1.5 Sobolev space

The Sobolev space of orderk is defined as

W k
p = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ k}, (A.5)

wherep ∈ [1,∞). The Sobolev norm is defined as

‖f‖W k
p (Ω) =


 ∑

|α|≤k

‖Dαf‖p
Lp(Ω)




1
p

(A.6)

A.1.6 Hilbert space

The Hilbert space is a Sobolev space for the specific case whenp = 2, that isHk(Ω) = W k
2 (Ω).

For instance, the Hilbert space of order one is given by

H1(Ω) = {f ∈ Lp(Ω) :
∂f

∂xj
∈ Lp(Ω), j = 1, . . . , n}, (A.7)

with an associated norm

‖f‖H1(Ω) =


‖f‖2

Lp(Ω) +
n∑

j=1

∥∥∥ ∂f

∂xj

∥∥∥
2

Lp(Ω)




1
2

. (A.8)

A.1.7 G-norm

Let y be a vector that belong to a vector space with an inner product defined by a metricG, the

associated norm is given in terms of the matrix operatorG as

||y||2G = yT Gy. (A.9)

In the case of theL2-norm,G = I and (A.9) becomes

||y||22 = yT y. (A.10)

A.1.8 Compact operators

Given an operatorJ , such thatJ : H1 7→ H2, is said to be bounded if

||J || = sup||Jx||H2 , for all x, such that,||x||H1 = 1.

Any linear bounded operator with finite range is compact; matrix operators are compact [176].

It is also known that linear operators inRn are continuous.

A.1.9 Kernel

Given a functionf : S1 7−→ S2, the kernel or null spaceK is a subset ofS1 defined as

K(f) = {x ∈ S1 such that f(x) = 0}. (A.11)
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A.1.10 Symmetric positive definite matrix

LetA ∈ Rn×n be a positive definite matrix within the subspace of n-by-n matrices, andx ∈ Rn,

A is such that

xT Ax > 0. (A.12)

As a consequence,|A| > 0 and the eigenvalues ofA are all positive (section A.2.1)

(http://mathworld.wolfram.com/PositiveDefiniteMatrix.html). Because of symmetry,Aij =

Aji, only the elements of the upper triangular matrix ofA are independent; for instance, in

3D, A is given by

A =




A11 A12 A13

A12 A22 A23

A13 A23 A33


 , (A.13)

with only six independent coefficients.

A.2 Numerical tools

A.2.1 Eigenvalue decomposition

An introduction to the eigenvalue decomposition can be found in [56]. LetA be an × n

matrix, the eigenvalue problem is defined as finding the eigenvectorsv ∈ Rn and eigenvalues

λ, complex in general, that satisfy

Ax = λx, (A.14)

which are given by solvingdet(A− λI) = 0.

Let A,D ∈ Rn×n, it is said that there is a similarity transformation betweenA andD

when there is an invertible matrixV ∈ Rn×n such that

D = V −1AV, (A.15)

whereD is a diagonal matrix whose diagonal elements are the eigenvalues andV is a ma-

trix whose columns are the eigenvectors. The relevance of similar matricesA andD are the

following properties:

• A andD have the same eigenvaluesλ.

• If x is an eigenvector ofA corresponding to the eigenvalueλ, that is,Ax = λx, then

V −1x is an eigenvector ofD corresponding to the eigenvalueλ, that is,D(V −1x) =

λ(V −1x).
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For symmetric matricesA ∈ Rn×n, A = AT , eigenvalues are real and eigenvectors are

orthonormal. Thus, one can find an invertible orthogonal matrixV ∈ Rn×n, V −1 = V T , such

that

V T AV = diag(λ1, . . . , λn) = D. (A.16)

Accordingly, as given by the spectrum theorem, ifA is a symmetric matrix corresponding to a

linear operator, then it can be written as

A =
n∑

i=1

λ1v1v
T
1 + . . . + λnvnvT

n = V DV T , (A.17)

whereλ1, . . . , λn is defined as the spectrum ofA

(http://en.wikipedia.org/wiki/Eigenvector).

Linear operators can be visualised by how they act on vectors. In fact, given a linear trans-

formation, eigenvectors provide the invariant directions by the transformation, and eigenvalues

the scalar factor by which they are transformed.

Let A be a symmetric matrix representation of a linear operator, andV DV T be its eigen-

value decomposition, a symmetric matrixA, in 2D, maps the unit circle onto an ellipse such that

the axes of the ellipse coincide with the direction of the eigenvectors and the length of the semi-

axes is given by the eigenvalues (http://en.wikipedia.org/wiki/Ellipse). In 3D, a 3-by-3 sym-

metric matrixA maps the unit sphere into an ellipsoid (http://en.wikipedia.org/wiki/Ellipsoid).

For instance, given a 2-by-2 symmetric matrix

A =


 3 1

1 3


 = [v1, v2]diag(4, 2)[v1, v2]T , (A.18)

wherev1 = (
√

2/2,
√

2/2) andv2 = (−√2/2,
√

2/2), A maps the unit circle onto an ellipse

where the main axes are given by the eigenvectorsvi and the semiaxes length given by the

eigenvaluesλ1 = 4, λ2 = 2 (Figure A.1). Besides, the action on the eigenvectors direction

is invariant,A(1, 1)T = 4(1, 1)T , A(−1, 1)T = 2(−1, 1)T ; the action on other vectors is not

invariant,A(1, 0)T = (3, 1)T , A(0,−1)T = (−1,−3)T .

An example of a positive definite matrix is the conductivity matrixσ, defined as a mapping

from the electrical fieldE to the current density fieldJ , J = σE. Let σ be the matrix given

above (A.18),σ = A, then given an electrical vector as the vector defined above, one can

calculate the direction of the current, which is invariant only along the directions given by the

eigenvectors.

A.2.2 SVD

Let J : Rn 7→ Rm is a finite compact linear operator [176], then there is a singular system

{uj , sj , vj}r
j=1, with the following properties:
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Figure A.1: A 2-by-2 symmetrix matrixA (A.18) maps the unit circle onto an ellipse where the

main axes are given by the eigenvectorsvi and the semiaxes length given by the eigenvalues

λ1 = 4, λ2 = 2.

i) the right singular vectorsvj form an orthonormal basis ofK(J)⊥ for j = 1, . . . , r and of

K(J) for j = r + 1, . . . , n;

ii) the left singular vectorsuj form an orthonormal basis ofR(J) for j = 1, . . . , r and of

R(J)⊥ for j = r + 1, . . . , m;

iii) the singular valuessj verify s1 ≥ · · · ≥ sr > sr+1 = . . . sm = 0 assumingn > m.

The following relations stand for the adjoint operatorJ∗: i) R(J∗) = K(J)⊥; ii) K(J∗) =

R(J)⊥

Let J be am×n matrix with a singular system{uj , sj , vj}j , thenJ has the singular value

decomposition

J = USV T , (A.19)

whereU ∈ Rm×m andV ∈ Rn×n are orthogonal matrices andS = diag(s1, . . . , sm), with

n > m. From the relationsJV = US andJT U = V S, it follows that the pairs{uj , s
2
j} and

{vj , s
2
j} are eigensolutions of the operatorsJJT andJT J respectively.

A.2.3 Rank

Let J ∈ Rm×n be the matrix defined in section A.2.2, then with the given properties, the rank

of J is

rank(J) = r, (A.20)

wherer (section A.2.2) is the number of singular valuess of J , such that,si 6= 0 for i = 1, . . . , r

andsi = 0 for i = r + 1, . . . ,m with m ≤ n. That is,r is the number of SV different to zero.

In practice, because SV decay slowly to zero, a SV is said to be zero when it has decayed

several order of magnitude. Also a jump usually occurs in the SV spectrum such that the SV



220 Appendix A. Miscellaneous mathematical definitions

corresponding to ther + 1 SV is few order of magnitude smaller than ther-th SV; in this

case, the rank is considered asr. A full-rank matrix is defined as that matrix whose SV decay

smoothly with no jump along its SV spectrum.

A.2.4 Pseudo-inverse

Let J be am× n matrix with SVDJ = USV T , the pseudo-inverse ofJ [56] is defined as

J† = V S−1UT , (A.21)

whereS−1 = diag(s−1
1 , . . . , s−1

m ).

An important property of the pseudo-inverse is its relation to the LS problem. Letd be the

observable data, andx the solution, ifd ∈ R(J) +R(J)⊥, then the least square solution to the

problem

min{||Jx− d||22}, (A.22)

is given in terms of the pseudo-inverse as

xLS = J†d. (A.23)

A.2.5 Condition number

Let J bem× n matrix, the SVD (A.19) gives the condition number as

cond(J) =
s1

sm
, (A.24)

wheres1 is the largest singular value andsm is the smallest one. IfJ represents the system ma-

trix of linear system of equations, a very high condition number implies ill-posedness because

of relatively small singular values, such that a singular matrix would have infinite condition

number. On the other hand, the highest condition number is cond= 1 for scalar matrices.

A.2.6 Differentiation

I introduce definitions and notation for the partial and directional derivatives, gradient, and

Jacobian. Then, I describe the usual formulation for calculating gradient and Jacobian.

Given a functionF : Rn 7→ R, its gradient is defined as the operator∇ : R 7→ Rn, such

that

∇F = (∂1F, . . . , ∂nF )T , where ∂i =
∂

∂xi
.

The partial derivative ofF with respect to the ith-coordinate is the linear function∂i :

Rn 7→ R described from the gradient as

∂iF (x) = (∇F (x))T ei,
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whereei is the ith-basis vector.

From the definition of partial derivative, the directional derivative ofF along the direction

given by the vectorv ∈ Rn is

∂vF (x) = (∇F (x))T v,

where by makingv = ei one gets back the partial derivative.

An analogous to the first derivative for multivariate functions,F : Rn 7→ Rm, is given by

the Frech́et derivativeF ′(x) defined as

F (x + h) = F (x) + F ′(x)h + o(||h||), where ||h|| → 0.

The Jacobian can be define as the operator composed ofn gradients asJ : Rn 7→ Rm

J =
∂(F1, . . . , Fm)
∂(x1, . . . , xn)

= (∇F1, . . . ,∇Fn)T ,

where each rowJi = ∇Fi can be computed by finite differences as

Ji =
F (x + h)− F (x)

h
. (A.25)

The Jacobian is usually expressed as am× n matrix with entries

Jij =
∂Fi

∂xj
.

FromJ , the directional derivative∂vF can be explain as

∂vF = Jv,

where the partial derivative is given forv = ei as

∂iF = Jei.

The gradient and Jacobian can be computed from the definition of the Lie-derivative or

directional derivative
d

dτ
F (x + τh)|τ=0 = F ′(x)h,

where both the gradient and Jacobian my be represented asF ′(x).
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Statistical background

This chapter contains the statistical background and notation necessary for understanding the

linear model, LS solutions, regularisation and priors for inverse problems, covariance estima-

tion, and PCA.

First, general concepts are introduced where multivariate analysis, joint distribution, mo-

ments, and Bayes theorem are the most important. Then, relevant results that are referred in the

thesis like maximum likelihood estimation, MAP estimation, best linear predictor, and PCA are

introduced.

B.1 General concepts

The framework of multivariate linear analysis assumes a linear model and more than one de-

pendent variable. General concepts on multivariate statistics can be found in [32, 91].

Let X = (X1, . . . , Xm) be a vector representing a multivariate distribution ofm discrete

random variables where each variableXi is a function from a sample spaceSi to the real

numbers, that isXi : Si 7→ R; andx = (x1, . . . , xm) be a realisation, or sample, ofX; and

P (Xi = xi), where0 ≤ P ≤ 1, be the probability of the variableXi to take the valuexi.

A random variableXi is characterised by its distribution functionF (Xi), which represents

the accumulative probability of being less or equal to a valuexi, that isF (Xi) = P (Xi ≤
xi). For a set of random variables, a joint distribution function represents the simultaneous

realisation of all variables, that is

F (x) = P (X1 ≤ x1, . . . , Xm ≤ xm), (B.1)

such that, when allxi → ∞, then F(x)=1. The probability of an event is defined by a joint

frequency function

f(x1, . . . , xm) = P (X1 = x1, . . . , Xm = xm), (B.2)



B.1. General concepts 223

such that

F (x) =
∑

t≤x

f(t). (B.3)

Treating several variables yield defining independent variables as those whose joint dis-

tribution can be separated onto the product of the variable distributions, i.e.X1, . . . , Xm are

independent if

f(x1, . . . , xm) = Πm
i=1f(xi). (B.4)

Non independent variables means that given the realisation of a variableXi, the probability

of the realisation of a variableXj depends on theP (Xi). Thus, conditional probability is

defined as

P (Xj |Xi) =
P (Xi, Xj)

P (Xi)
. (B.5)

Otherwise, independent variables comply

P (Xj |Xi) = P (Xj). (B.6)

B.1.1 First and second moments

Among all types of distribution, the focus here is on Gaussian distributions, which can be

defined by the first and second moments. The first moment or expected value is defined as

µ = (µ1, . . . , µm) = (E[x1], . . . , E[xm]), (B.7)

which is a measure of the centre of mass of the distribution.

The second moment or covariance of two variablesxi andxj is given by

Cij = cov(xi, xj) = E[(xi − µi)(xj − µj)] = E[xixj ]− µiµj , (B.8)

which is measure of the linear dependence between the variables. Thus,Cij = 0 for indepen-

dent variables. A normalised measure of correlation between variables is given by the correla-

tion matrix, whose elements are given by

corr(xi, xj) =
cov(xi, xj)

σiσj
, (B.9)

whereσ2
i = cov(xi, xi) is the variance ofxi, andσ is the STandard Deviation (STD).

B.1.2 Bayes theorem

LetX andY be two random set of variables jointly distributed, whereY is the observed variable

function ofX, the posterior probability or Maximum A Posteriori (MAP) estimator is given by

P (X|Y ) =
P (Y |X)
P (Y )

P (X), (B.10)

whereP (X) is the a priori density function or prior, andP (Y |X) is the likelihood density

function.
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B.1.3 Gaussian distribution

Let X = (X1, . . . , Xm) be a multivariate standard Gaussian, Normal, distribution with mean

zero and unit covariance matrix, indicated asX ∼ N(0, I) and read as ’η follows a Normal

distribution of mean zero and covarianceI ’. Its joint frequency function is given by

f(x) =
1

(2π)
m
2

exp
(
−1

2
xT x

)
. (B.11)

Now, by applying a transformationY = µ+Bx, Y becomes a Gaussian distribution with mean

µ and covariance matrixC = BBT , i.e. Y ∼ N(µ,C), with the joint frequency function given

by

f(y) =
1

(2π)
m
2 | det(C)| 12

exp
(
−1

2
(y − µ)T C−1(y − µ)

)
, (B.12)

assuming thatB−1 exists. In fact, standard variablesXi assume an equal variance domain,

described by ones in the covariance diagonal, and no correlation, explained by off diagonals of

C being zero. However, in general, variables may differ in variance and be correlated, which is

modelled by the Normal variablesYi having a general covariance matrixC.

B.2 Maximum Likelihood Estimate

Given a set of variablesY ∈ Rm and unknown parametersθ = θ1, . . . , θr, the joint frequency

function, also called likelihoodL(θ), can be used for estimatingθ. The Maximum Likelihood

Estimate (MLE) maximiseslnL(θ) with respect all parametersθ as

∂

∂θk
lnL(θ) = 0, k = 1, . . . , r. (B.13)

Relevant MLEs from a Gaussian distribution are the linear LS solution estimations, mean, and

variance, however, since variance MLE is biased, it is common used an unbiased estimate of

the covariance.

B.3 Estimation of the first and second moments

Beingµ the population mean, andC the population covariance matrix, they can be estimated

from an experiment ofn observations by applying MLE, however, the MLE of the covariance is

a biased estimate. Given a parameterθ, the bias of the estimator̂θ is defined by bias= E[θ̂]−θ;

therefore, the unbiased estimator has bias equal zero.

B.3.1 Mean estimation

The expectation for the variablexi is computed as

E[xi] =
1
m

n∑

k=1

xik. (B.14)
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B.3.2 Unbiased estimate of the covariance

The unbiased estimate of the covariance is given by

Cij = cov(xi, xj) =
1

n− 1
[(xi − E[xi])(xj −E[xj ])], (B.15)

whereE[xi] is given by (B.14).

As the number of variables,m, increases, the computation ofC using (B.14) becomes

impracticable since the number of observations must be equal to the number of parameters to

be determined, given by (4.35). Therefore, if the number ob observationsn is less than (4.35),

then the covariance will no be completely determined and may be ill-posed; besides, ifn < m,

then the covariance will be rank-deficient.

A possible solution for determiningC from a low number of observations is imposing

constraints to it. There are several ways for constraining the covariance [98] where the most

explicit is applying conditional independence to variables that are not directly dependent. This

is employed is Geophysics for spatial data where entries for the concentration matrix,C−1,

are set to zero for conditional independent variables that are, for example, far apart. For EIT

of the head, it is not obvious how to define conditional independence where channel variables

correspond to injection from two diametric positions. However, other constraints could be

imposed.

B.4 Best linear predictors

Given a set of observable variablesy, one is interested in obtaining the best predictor based on

a new set of variablesx. However, while the best predictor requires the frequency distribution,

the Best Linear Predictor (BLP), provides a linear approximationf(x) [32], based on the first

and second moments, minimising

E[(y − f(x))T (y − f(x))]. (B.16)

B.4.1 Principal Component Analysis

Principal Component Analysis (PCA), known as the oldest multivariate analysis technique [32],

provides a new set of variables defining the Principal Components (PCs), which are BLP of the

original data.

PCA to high dimensionality data for reducing the dimensionality to few uncorrelated com-

ponents that retain most of the information of the original data. Therefore, if there is high

correlation, then the first PCs will contain most of the information.
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Originally, given the datay ∈ Rm and vector basisai ∈ Rm, PCsaT
i y were derived such

thataT
i y has maximum variance, and they are orthogonal in the sense

cov(aT
i y, aT

j y) = aT
i Caj , (B.17)

whereC = cov(y) [84, 32].

Using Lagrange multipliers, the first PC is obtaining by maximising its variance, subject

to normalisation, that is,

max
a1

{aT
1 Ca1 − λ1(aT

1 a1)}, (B.18)

which becomes

(C − λ1I)a1 = 0. (B.19)

Higher order components are calculated on the same way by imposing orthogonality.

The new basisai are the eigenvectors ofC with eigenvalueλi; the PCs of the data are the

projections of the eigenvectors onto the data, i.e.aT
i y.

Note, the variance, eigenvalue, of the PCs tend to decrease for higher components [84].

Thus, approximating the data from the first PCs when the covariance matrix has been estimated

from a low number of observations, is appealing since last PCs are estimated with lower preci-

sion.

In the case where the covariance if rank deficient, if there areq redundant variables, then

rank(C) = m− q, and one can reduce fromm to m− q variables without loss of information

[84].
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Derivation of linear approaches

Difference imaging results can be improved by reconstructing relative difference data rather

than difference data [74, Chapter 4] requiring also a normalisation in the Jacobian, called row

normalisation. Here, the linear LS problem is derived from the nonlinear LS problem for the

case of relative difference data.

Let V be the measured voltage andVref be the measured reference voltage;F (x) be the

model predicted voltages, or forward solution, for a given conductivity distributionx; and

F (xref) be the predicted reference voltage, for a reference conductivityxref. For a small con-

ductivity change∆x = x − x0 aroundx0, the predicted voltageF (x) can be approximated

around the predicted reference voltageF (x0) using Taylor’s expansion as

F (x) ' F (x0) + J(x0)∆x, (C.1)

where changes of order(∆x)2 are neglected, andJ(x0) is the Jacobian of the forward mapping

F atx0.

Relative data is obtained by dividing the measured dataV by its measured reference data

Vref, that is,
V

Vref
, (C.2)

relative difference datad by

d =
V − Vref

Vref
. (C.3)

C.1 Nonlinear least squares problem

The nonlinear LS problem seeks an approximated solution to the nonlinear system of equations

F (x) = V as

min
x
{‖V − F (x)‖2}. (C.4)

Now, dealing with relative voltagesF (x)/F (xref) = V/Vref, the LS problem becomes

min
x
{‖ V

Vref
− F (x)

F (xref)
‖2}. (C.5)
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C.2 Linear least squares problem

Substituting Taylor’s approximation in (C.1) into the nonlinear LS problem (C.5),

‖ V

Vref
− F (x0)

F (xref)
+

Vref

F (xref)
− J(x0)∆x‖2, (C.6)

and assumingxref = x0, the linear LS problem is given by

min
x
{‖V − Vref

Vref
− J(x0)∆x

F (x0)
‖2}, (C.7)

which can be expressed in terms ofd (C.3) as

min
x
{‖d− 1

F (x0)
J(x0)∆x‖2}, (C.8)

whose solution estimates a conductivity change∆xLS for relative difference datad as

∆xLS =
(

1
F (x0)

J(x0)
)†

d, (C.9)

where† denotes the pseudo-inverse.

However, in practice it seems that using the termJx0 instead ofF (x0) for the row nor-

malisation (section C.3) yields better results.

C.3 Row normalisation

Defining the row normalisation matrix as

R = diag(F1(x0)−1, . . . , Fm(x0)−1), (C.10)

where each row of the Jacobian is scaled by the corresponding predicted voltage, for a total

number ofm predicted voltages. Because each entry of the voltage difference (C.2) has been

scaled by the reference voltage, the same operation must be done to the Jacobian. Therefore,

row normalisation must be applied when reconstructing relative difference data.

Denoting the normalised Jacobian as

Jn = RJ, (C.11)

the linear LS problem (C.8) becomes

min
x
{‖d− Jn∆x‖2}, (C.12)

and the solution to (C.8) is given by

∆xLS = J†nd. (C.13)
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In fact, for obtaining relative difference conductivity in percentage change one needs to

divide the solution (C.13) by the reference conductivity

100 ∗ ∆x

x0
. (C.14)

Row normalisation can be derived in a more practical way. Given that the Jacobian maps

a change of conductivity∆x into a change of voltage∆V , that is,J : ∆x 7→ ∆V , where

∆x = x− x0 and∆V = V − V0, the relative difference data can be approximated as

∆V

V0
' J∆x

F (x0)
, (C.15)

the conductivity change is then obtained as

∆x = J−1
n

∆V

V0
. (C.16)

Row normalisation for EIT has been studied in [108], however, it is still not very clear

the best approach to row normalisation. In practice, it seems that results by using the row

normalisation (C.10) are better ifF (x0) is approximated byb = Jx0, that is, definingR as

R = diag(b−1
1 , . . . , b−1

m ). (C.17)

Nevertheless, since it has been pointed out that row normalisation [108] increases the condi-

tioning of the Jacobian (Figure C.1), it would be more efficient to apply the normalisation tod,

such that, the problem becomes

J∆x = (Jx0)d. (C.18)
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Figure C.1: Relative singular values of the Jacobian with and without row normalisation.



Appendix D

Concepts of differential geometry

An introduction to classic differential geometry can be found in [124].

D.1 Diffeomorphism on manifolds

A smooth manifold can be described as a set of points with a neighbourhood called ’local

charts’ such that there is a one-to-one correspondence between each chart and an open region

of R3, which induces local coordinates on each chart. Examples of manifolds are a region of

the Euclidean space or a surface with non-singular points.

A diffeomorphismΨ can be defined as a one-to-one function where both the function and

its inverse are smooth. Thus, one can define a class of diffeomorphically equivalent manifolds

M if there exist a diffeomorphic transformation among the manifolds,Ψ : M̃ 7→ M, given by

smooth functionsfi

x = f1(x̃, ỹ, z̃)

y = f2(x̃, ỹ, z̃)

z = f3(x̃, ỹ, z̃)

, (D.1)

such that its JacobianΨ′ = ∂(f1, f2, f3)/∂(x̃, ỹ, z̃) has nonzero determinant, that is,|Ψ′| 6= 0.

It includes affine transformations, nonlinear smooth transformations, and infinitesimal per-

turbations. Affine are linear transformations together with translation that preserved lines and

parallelism but not angles and lengths; therefore, they are considered as linear diffeomorphism

acting on linear manifolds by (adding) a constant vector to each point of the manifold.

D.2 Invariance up to a diffeomorphism

An interesting idea from general relativity, that indirectly provides physical intuition to the

non-unique anisotropic inverse problem, explains a diffeomorphism as a type of transfor-

mation such that physical events are independent of the choice of coordinates (Math Pages,

http://www.mathpages.com/rr/s9-02/9-02.htm). This type of transformation extended the pre-

vious transformation that in special relativity defined the class of inertial systems to a more gen-
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eral choice of transformation that relates systems of coordinates to describe events in general

relativity. Thus, a one-to-one smooth transformation with differentiable inverse left invariant

physical laws, such that the physical description of events did not depend on the choice of coor-

dinates. This type of transformation is called diffeomorphism and two sets of an event are said

to be equivalent up to a diffeomorphism if there exist a diffeomorphic transformation between

them.

D.3 Curves and surfaces in 3D manifolds

A 3D curve in parametric form is defined as

x = f1(t), y = f2(t), z = f3(t), (D.2)

with curve length

dl = |vt|dt, (D.3)

wherevt is the tangent or velocity vector to the curve at every point, given by

v(t) =
(

df1

dt
,
df2

dt
,
df3

dt

)
= viei,

1 (D.4)

wherevi are the vector components defined as

vi =
dfi

dt
, (D.5)

andei are the vectors tangent to the coordinate grid, given by

ei =
∂

∂xi
. (D.6)

Curve natural coordinates are defined in terms of the natural parametert such that|vt| = 1;

in this case, a normal to the curve is

ν =
dvt

dt
where v ⊥ ν =

dv

dt
since v

dv

dt
= 0. (D.7)

Three vectors are needed to uniquely describe a curve in 3D,v, ν, b, where the third vector

b, called the binormal, can be defined by vectorial product as

b = v ∧ ν. (D.8)

In fact, these concepts defined the extrinsic geometry of a curve.

A nonsingular surface in 3D is defined by

F (x, y, z) = const. where ∇F 6= 0. (D.9)

1Summation is understood over repeated indices.
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From the definition (D.9) the gradient to the surface is given by

∇F (x, y, z) =
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
=

3∑

i=1

∂F

∂xi
ei. (D.10)

Given a curve (D.2) and a functiong(x, y, z) defined at each point on the curve,g =

g(f1(t), f2(t), f3(t)), the function derivative is given by the projection of the function gradient

onto the curve velocity vector

dg

dt
= ∇g · vt =

∂g

∂xi

dxi

dt
. (D.11)

D.4 Tensors and transformation of coordinates

In this section, a distinction between up and lower indices is used to define contravariant and

covariant components of a tensor and theirs transformation rules. A tensor is introduced as

a generalisation of scalar, vector, and matrix, which are defined as rank zero, one, and two

tensors. Here, only up to two rank tensors are considered. A zero rank tensor is a scalar, which

is invariant under any transformation. A one rank tensor is a vectorv, which can be described

in terms of contravariant componentsvi, with upper index, or in terms of covariant components

vi, with lower index. A two rank tensor can have two contravariant indices asvij , two covariant

indices asvij , or mixed asvi
j . Tensor components are defined by their transformation rules

under a change of coordinates [163].

Given the coordinatesxi in terms of the coordinateśxj as

xi = xi(x́j), (D.12)

the Jacobian of the transformation can be defined as

Ai
j =

∂xi

∂x́j
, (D.13)

or in matrix form as

A =
∂(x1, x2, x3)
∂(x́1, x́2, x́3)

=




∂x1

∂x́1
∂x1

∂x́2
∂x1

∂x́3

∂x2

∂x́1
∂x2

∂x́2
∂x2

∂x́3

∂x3

∂x́1
∂x3

∂x́2
∂x3

∂x́3


 . (D.14)

Similarly, if the Jacobian determinant is non zero,|∂xi/∂x́j | 6= 0, then there exists an inverse

relationx́ = x́(x), so the inverse of the JacobianA is given by

Bi
j =

∂x́i

∂xj
, (D.15)
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that is,B = A−1. The effect of the transformation in the differential volumedx1dx2dx3 is

given by the determinant of the transformation|A| by

dx1dx2dx3 = |A|dx́1dx́2dx́3, (D.16)

such that the volume increases when|A| is larger than one.

D.4.1 Rank one tensor: Vector components

The contravariant component of a vector,vi, change as

vi =
∂xi

∂x́j
v́j = Ai

j v́
j (D.17)

v́i =
∂x́i

∂xj
vj = Bi

jv
j , (D.18)

or in matrix form as

(vc) = A(v́c) (D.19)

(v́c) = A−1(vc) = B(vc), (D.20)

wherec indicates that the component is contravariant, and(vc) = (v1, v2, v3)T .

The covariant component of a vector,vi, change as

v́i =
∂xj

∂x́i
vj = Aj

ivj (D.21)

vi =
∂x́j

∂xi
v́j = Bj

i v́j , (D.22)

or in matrix form as

(v́c) = AT (vc) (D.23)

(vc) = BT (v́c) (D.24)

where c indicates that the component is covariant, and the transpose is introduced because

the upper index of a matrix, as in (D.21,D.22), is ’on the top left’ (the lower index ’on the

bottom right’) considered as row (column), and so it must be transposed to agree with the

matrix multiplication.

An example of covariant vector is the coordinate vectorei = ∂i, being parallel to the

coordinates lines; examples of contravariant vectors are the differential formdxi and and the

velocity vectorvi = dxi/dt, being perpendicular to the coordinates lines. Note that the differ-

ential formsdxi have a direct integrationxi.
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D.4.2 Two rank tensor: Conductivity tensor

A two rank tensor with two contravariant components like the conductivity tensorσij , which is

represented as a two-by-two matrix in some coordinates, follows the transformation rule

σij =
∂xi

∂x́k
σ́kl ∂xj

∂x́l
= Ai

kσ́
kl(AT )j

l (D.25)

σ́ij =
∂x́i

∂xk
σkl ∂x́j

∂xl
= (A−1)i

kσ
kl(A−T )j

l = Bi
kσ

kl(BT )j
l (D.26)

where in matrix form

(σ) = A(σ́)AT (D.27)

(σ́) = A−1(σ)A−T = BσBT (D.28)

In fact, given an orthogonal transformationx = x(x́) [36], wherex is considered the given

global coordinate system, and́x the local coordinate system, for which́σ is diagonal,σ can be

also defined by the eigenvalue decomposition as

σ = V DV T , (D.29)

where the eigenvalue matrixD can be understood as the conductivity tensor in the local co-

ordinate system,V = [v1, v2, v3] with vi the eigenvectors andσ as the conductivity tensor in

the global coordinate system, which agrees with the transformation rulesA = [é1, é2, é3] for

éi = ∂x/∂x́i = vi (section A.2.1).

D.4.3 Two tensor: Riemannian metric tensor

D.4.4 Riemannian metric tensor

Let x = (x1, x2, x3) be the Cartesian coordinates in the Euclidean space, the scalar product

induces a norm for the velocity vectorv = dx/dt

‖v‖2 =
∥∥∥dx

dt

∥∥∥
2

=
3∑

i=1

(
dxi

dt

)2

=
dxk

dt
δkl

dxl

dt
, (D.30)

whereδij is the Euclidean metric given by the unit matrix. By definingzi = x́i as the old

coordinate system, such thatxi = xi(zi), and by applying the transformation rule for covariant

coordinates (D.20)

‖v‖2 =
dzi

dt

∂xk

∂zi
δkl

∂xl

∂zj

dzj

dt
=

dzi

dt
Ak

i δklA
l
j

dzj

dt
. (D.31)

Now, since a Riemannian metrićg is a positive definite quadratic form that leaves invariant the

scalar product (D.30) in the new coordinates, then

‖v‖2 =
∥∥∥dz

dt

∥∥∥
2

=
dzi

dt
ǵij

dz

dt

j

, (D.32)
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and so the new metric is

ǵij = Ak
i δklA

l
j . (D.33)

In fact, in the Euclidean spaceg = I, and then, in matrix form, a metrićG in the old coordinate

system is given with respect to the new metricG by

Ǵ = AT GA, (D.34)

which is equivalent to the transformation rule for covariant two rank tensors.

Let v, w be two vectors inR3, the Riemannian metric can be defined, by tangent vectors,

vectors in contravariant coordinates, at every point of the manifold and depending smoothly on

the choice of local coordinates, as a positive definite symmetric bilinear functiong : R3×R3 7→
R+. That defines a scalar product for each pointP of a manifoldM, being locally smooth, as

v · w = uigijw
j , (D.35)

with an induced norm or distance (D.30). Thus, the metric is defined by

(http://en.wikipedia.org/wiki/Metrictensor)

gij =<
∂

∂xi
,

∂

∂xj
>=< ei, ej > . (D.36)

The length between the pointsa andb is defined as

L =
∫ b

a

(
dxigijdxj

) 1
2 . (D.37)

D.4.5 Relation conductivity-metric

A relation between the conductivity and the metric in Riemannian manifolds can be done in

terms of modern differential geometry [104, 174]. LetM be a connected manifold with com-

pact boundary∂M andg the Riemannian metric such thatds2 = gijdxidxj .

Given the conductivity tensorσ, in 3D, there is a metricg for which the conductivity

equation becomes the Laplace Beltrami equation

1√
|g|

∂

∂xi

(√
|g|gij ∂u

∂xj

)
= 0, (D.38)

where the metric is given uniquely by the conductivity

gij =
1
|σkl|σ

ij . (D.39)

Note thatgij is the inverse ofgij . With this relation, the EIT problem is equivalent to determine

the Riemannian metric from the NtoD mapΛg = Λσ. Because given two metricsg and g̃

related by a diffeomorphism that fixes the boundary, thenΛg = Λg̃, and so the metric can be
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determined in two steps [174]: i) determining the abstract manifold that corresponds to the

conductivity, ii) selecting an appropriate embedding of the abstract manifold inR3. While the

step ii) is not uniquely defined, providing extra information can make it unique.

As an example, givenσij = diag(2, 1, 1), gij = diag(1, 0.5, 0.5), and thengij =

diag(1, 2, 2), which leads to a differential lengthds2 = (dx)2 + 2(dy)2 + 2(dz)2.

D.4.6 Example: spherical coordinates

Given the change of coordinates(x́, ý, ź) = (r, θ, φ) 7→ (x, y, z), (er, eθ, eφ) are given by the

transformation rule (D.24), for example,

er =
∂xj

∂xr
ej =

∂x

∂r
ex +

∂y

∂r
ey +

∂z

∂r
ez. (D.40)

Given the conductivity tensoŕσ = σ́(r, θ, φ), that is, initialised in spherical coordinates, then in

the new coordinates it is given by

σ = Aσ́AT , (D.41)

whereA is given by

A =
∂(x, y, z)
∂(r, θ, φ)

= [er, eθ, eφ]

=




sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


 . (D.42)

An analogy with the eigenvalue decomposition can be defined asσ = V DV T by defining

V = A andD = σ́.

Let f = f(x, y, z) = x2 + y2 + z2 = const. be a 3D spherical surface, with gradient given

by

∇f =
∑

i

∂f

∂xi
ei = (2x, 2y, 2z), (D.43)

the derivative with respect toθ is

df

dθ
=< ∇f,

dx

dt
>=

∑

i

∂f

∂xi

dxi

dθ
= 0, (D.44)

such thatf is constant along the curveθ; the same applies toφ. The same applies tor that

yields the obvious result

df

dr
= (2x, 2y, 2z) · (x

r
,
y

r
,
z

r
) = 2r. (D.45)
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D.4.7 Tangent and cotangent space

Differential geometry defining vectors and tensors on manifolds provides an intuitive under-

standing of the concepts of vectors and tensors. Here, the interest is on smooth manifolds and

diffeomorphic transformations between them.

Given a manifoldM , the tangent spaceTpM is defined as the space composed of all tan-

gent vectors for every pointp. The vector position ofp is given, in 3D, asvp = (x1, x2, x3) =

(x1 − 0, x2 − 0, x3 − 0), v ∈ TpM , wherexi are the coordinates; therefore, the tangent vec-

tors correspond to the usual vectors. LetF : M 7→ N be a diffeomorphism, the push for-

ward F∗ is defined as a linear map from the tangent space ofM to the tangent space onN

(http://en.wikipedia.org/wiki/Pushforward)

F∗ : TpM 7→ TF (p)N, (D.46)

then the push forward maps vectors to vectors, and so a linear map can be defined on how it

acts on vectors. IfF∗ is defined as matrix, then the push forward corresponds to the Jacobian of

the transformationJ = ∂x/∂x′, wherex′ are the coordinates inM andx are the coordinates

in N , such that the push forward of the vectorv′ is Jv′ = v.

The cotangent spaceT ∗p M is defined as the dual space to the tangent spaceTpM , com-

posed of linear functions or tensorsf ∈ T ∗p M that map vectors onto numbers

f : TpM 7→ R. (D.47)

For example, the projection of any vectorv ontow can be defined as a tensorfw(v) = w ·v. The

pull back of tensors is defined as a linear map from the cotangent spaceT ∗p M to the cotangent

space onT ∗p N

F ∗ : T ∗F (p)N 7→ T ∗p M, (D.48)

that is, it map backs tensors (http://en.wikipedia.org/wiki/Pullback). This is clear when ex-

pressed for the previous example of a projection

(F ∗f)(v) = f(F (v)) = f(w), (D.49)

where the action of the pull backF ∗ on the tensorf is given by the tensorf acting on tensor

w ∈ T ∗p N . Let A be the matrix representing the push forwardF∗, then since the pull back acts

in reverse direction, it can be proven that the transpose matrixAT represents the pull backF ∗.

In conclusion, given a diffeomorphismF : M 7→ N , the push forward is a linear map

F∗ : TpM 7→ TF (p)N represented by a matrixA that pushes forward vectors (vectors in con-

travariant coordinates) asAv′ = v, which agrees with the previous definition (D.20), and the
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pull back is a linear mapF ∗ : T ∗F (p)N 7→ T ∗p M represented byAT that pulls back tensors (vec-

tors in covariant coordinates) asAT f = f ′, which agrees with the previous definition (D.24).

One rank tensors or vectors can be defined by both covariant and contravariant compo-

nents, which are related by defining a metric on the manifold. Position vectors are given in

contravariant coordinates and belong to the tangent space; linear functions are given by covari-

ant components and belong to the cotangent space. Linear functions are also called covectors

and one-forms.
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Conductivity tensor scaling

The aim of this chapter is to analyse the effect of constraining (scaling) the conductivity tensor

in terms of the current norm, tensor trace, and determinant, for two constraints that have been

previously applied in EEG: i) scaling of the tensor trace [90] and ii) Wang’s constraint [182].

It is assumed there is an electrical field with equal componentsEi = E. Let σ =

σscdiag(1, 1, 1) be the isotropic conductivity tensor whereσsc is the scalar isotropic conduc-

tivity. The trace is trace(σ) = 3σsc. The current density is

‖J‖2 = σ2
xxE2

x + σ2
yyE

2
y + σ2

zzE
2
z = 3σ2

scE
2, (E.1)

so‖J‖ =
√

3σscE. The determinant is|σ3
sc|.

Now, given a scalar anisotropic tensor, whose conductivity in the x and y-direction, the x-y

plane, is ten times larger than in the z-direction,σxx = σyy = 10σzz, the effect of scaling the

tensor is compared to the isotropic case.

Scaling the trace to be equal to the isotropic one

trace(σ) = 3σsc = 21σzz, (E.2)

thenσzz = (3/21)σsc andσxx = σyy = 10(3/21)σsc. The current norm is

‖J‖ =
√

201
3
21

σscE = 2.03σscE. (E.3)

The determinant is

|σ| = 102

(
3
21

)3

σ3
sc = 0.29σ3

sc. (E.4)

Imposing Wang’s constraint

σxxσzz = σ2
sc = 10σ2

zz, (E.5)

thenσxx = σyy =
√

10σsc andσzz = σsc/
√

10. The trace is

trace(σ) =
(
2
√

10 + 1/
√

10
)

σsc = 6.64σsc. (E.6)
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The current norm is

‖J‖ =
√

20 + 0.1σscE = 4.48σscE. (E.7)

The determinnant is

|σ| = 10√
10

σ3
sc = 3.16σ3

sc. (E.8)

Wang’s constraint yields twice the trace and current norm than the isotropic case while

scaling the trace yields same trace and similar current norm. The determinant is different for

both of them by a factor of three. Larger effects were found using a volume constraint [182],

which constrained the product of the three eigenvalues to be equal to the equivalent product for

the isotropic conductivity, than Wang’s constraint. Here, both Wang’s constraint and scaling the

trace were used yet the latter was preferred for studying the effect of anisotropy of the head.
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[64] A. V. Harreveld and J. P. Schadé. Changes in the electrical conductivity of cerebral cortex

during seizure activity.Experimental Neurology, 5:383–400, 1962.

[65] N. D. Harris, A. J. Suggett, D. C. Barber, and B. H. Brown. Applied potential tomog-

raphy: a new technique for monitoring pulmonary function.Clin. Phys. Physiol. Meas.,

9(Suppl. A):79–85, 1988.

[66] J. Haueisen, D. S. Tuch, C. Ramon, P. H. Schimpf, V. J. Wedeen, J. S. George, and J. W.

Belliveau. The influence of brain tissue anisotropy on human eeg and meg.NeuroImage,

15(1):159–66, 2002.

[67] J. C. Hebden, A. Gibson, R. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R.

Arridge, T. Austin, J. H. Meek, and J. S. Wyatt. Three-dimensional optical tomography

of the premature infant brain.Phys. Med. Biol., 47:4155–4166, 2002.

[68] D. J. Heeger and D. Ress. What does fMRI tell us about neuronal activity?Nature,

3:142–151, 2002.

[69] L. M. Heikkinen, T. Vilhunen, R. M. West, and M. Vauhkonen. Simultaneous reconstruc-

tion of electrode contact impedances and internal electrical properties: II. Laboratory

experiments.Meas. Sci. Technol., 13(12):1855–1861, 2002.

[70] J. Heino, E. Somersalo, and J. P. Kaipio. Compensation for geometric mismodelling by

anisotropies in optical tomography.Optics Express, 13(1):296–308, 2005.

[71] M. R. Hestenes.Conjugate direction methods in optimization. Springer-Verlag, Berlin,

1980.

[72] D. S. Holder. Detection of cerebral ischaemia in the anaesthetised rat by impedance

measurement with scalp electrodes: implications for non-invasive imaging of stroke by

electrical impedance tomography.Clin. Phys. Physiol. Meas., 13(1):63–75, 1992.



248 Bibliography

[73] D. S. Holder. Electrical impedance tomography with cortical or scalp electrodes during

global cerebral ischaemia in the anaesthetised rat.Clin. Phys. Physiol. Meas., 13(1):87–

98, 1992.

[74] D. S. Holder.Clinical and Physiological Applications of EIT. UCL Press, London, UK,

1993.

[75] D. S. Holder.Electrical Impedance Tomography. IOP, London, UK, 2005.

[76] D. S. Holder, A. Rao, and Y. Hanquan. Imaging of physiologically evoked responses

by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit.

Physiol. Meas., 17(Suppl. A):A179–A186, 1996.

[77] L. Horesh. Some novel approaches in modelling and image reconstruction for multi-

frequency electrical impedance tomography of the human brain. PhD thesis, University

College London, London, UK, 2006.

[78] L. Horesh, O. Gilad, A. Romsauerova, S. R. Arridge, and D. S. Holder. Stroke type by

Multi-Frequency Electrical Impedance Tomography (MFEIT)-a feasibility study. In6th

Conference on Biomedical Applications of Electrical Impedance Tomography, London,

UK, 2005. UCL.

[79] L. Horesh, A. Romsauerova, L. Fabrizi, A. McEwan, S. R. Arridge, and D. S. Holder.

Review of the dielectric properties of human head pathophysiology for Multi-Frequency

Electrical Impedance Tomography (MFEIT).Paper in preparation, 2007.

[80] A. L. Hyaric and M. K. Pidcock. A one step image reconstruction algorithm for electrical

impedance tomography in three dimensions.Physiol. Meas., 21:95–98, 2000.

[81] D. Isaacson and E. L. Isaacson. Comment on calderón’s paper: on an inverse boundary

value problem.Math. Comp., 52(186):553–559, 1989.

[82] D. Isaacson, J. Newell, S. Simske, and J. Goble. NOSER: An algorithm for solving the

inverse conductivity problem.Internat. J. Imaging Systems and Technol., 2:66–75, 1990.

[83] V. Isakov. Uniqueness and stability in multi-dimensional inverse problems.Inv. Prob-

lems, 9:579–621, 1993.

[84] I. T. Jolliffe. Principal component analysis. Springer-Verlag, New York, 1986.



Bibliography 249

[85] J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen. Statistical inversion

and Monte Carlo sampling methods in electrical impedance tomography.Inv. Problems,

316:1487–1522, 2000.

[86] M. G. Kang and A. K. Katsaggelos. General choice of the regularisation functional in

regularised image restoration.IEEE Trans. Image Processing, 4(5), 1995.

[87] P. A. Karjalainen, J. P. Kaipio, A. S. Koistinen, and M. Vauhkonen. Subspace regular-

ization method for the single-trial estimation of evoked potentials.IEEE Trans. Biomed.

Eng., 46(7):849–860, 1999.

[88] L. Kaufman and A. Neumaier. PET regularisation by envelope guided conjugate gradient.

IEEE Trans. Medical Imaging, 15:385–389, 1996.

[89] J. Kevorkian. Partial differential equations: analytical solution techniques. Springer-

Verlag, New York, 2000.

[90] S. Kim, T.-S. Kim, Y. Zhou, and M. Singh. Influence of conductivity tensors in the

finite element model of the head on the forward solution og EEG.IEEE Trans. Nuclear

Science, 50:133–139, 2003.

[91] K. knight. Mathematical statistics. Chapman & Hall/CRC, EEUU, 2000.

[92] R. V. Kohn and M. Vogelius. Determining conductivity by boundary measurements,

interior results II.Commum. Pure Appl. Math., 37:281–298, 1984.

[93] R. V. Kohn and M. Vogelius. Determining conductivity by boundary measurements,

interior results II.Commum. Pure Appl. Math., 38:643–667, 1985.

[94] V. Kolehmainen. Novel approaches to image reconstruction in diffusion tomography.

PhD thesis, Kuopio University, 2001.

[95] V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio.

Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from

boundary data.Inv. Problems, 15:1375–1391, 1999.

[96] V. Kolehmainen, M. Lassas, and P. Ola. The inverse conductivity problem with an im-

perfectly known boundary.SIAM J. Appl. Math., 66(2):365–383, 2005.

[97] V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio. Assesment of er-

rors in static electrical impedance tomography with adjacent and trigonometric current

patterns.Physiol. Meas., 18:289–303, 1997.



250 Bibliography

[98] W. J. Krzanowoski and F. H. C. Marriott.Multivariate analysis. Part2. Classification,

covariance structures and repeated measurements. Edward Arnold, London, UK, 1994.

[99] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P.

Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J.

Brady, and B. R. Rosen. Dynamic magnetic resonance imaging of human brain activity

during primary sensory stimulation. InProc. Natl. Acad. Sci. USA, volume 89, pages

5675–5679, 1992.

[100] R. Lazarovitch, D. Rittel, and I. Bucher. Experimental crack identification using electri-

cal impedance tomography.NDT&E International, Elsevier, 35:301–316, 2002.

[101] J. M. Lee and G. Uhlmann. Determining anisotropic real-analytical conductivities by

boundary measurements.Commum. Pure Appl. Math., 38:643–667, 1989.

[102] A. Leemans, J. Sijbers, M. Verhoye, V. der Linden, and D. V. Dyck. A simulated phan-

tom for diffusion tensor MRI fiber tracking. InProc. of Acivs (Advanced Concepts for

Intelligent Vision Systems), pages 2–5, 2003.

[103] H. Lester and S. R. Arridge. A survey of hierarchical non-linear medical image registra-

tion. Pattern Recognition, 32:129–149, 1999.

[104] W. R. B. Lionheart. Conformal uniqueness results in anisotropic electrical impedance

imaging. Inv. Problems, 13:125–34, 1997.

[105] W. R. B. Lionheart. Boundary shape and electrical impedance tomography.Inv. Prob-

lems, 14:139–147, 1998.

[106] W. R. B. Lionheart. EIT reconstruction algorithms: pitfalls, challenges and recent devel-

opments.Physiol. Meas., 25:125–142, 2004.

[107] W. R. B. Lionheart, J. Kaipio, and C. N. McLeod. Generalized optimal current patterns

and electrical safety in EIT.Physiol. Meas., 22:85–90, 2001.

[108] A. D. Liston. Models and image reconstruction in electrical impedance tomography of

brain function. PhD thesis, UCL, London, England, 2003.

[109] H. D. Lux, U. Heinemann, and I. Dietzel. Ionic changes and alterations in the size of the

extracellular space during epileptic activity.Advances in neurology, 44:619–939, 1986.



Bibliography 251

[110] J. B. A. Maintz and M. A. Viergever. A survey of medical image registration.Medical

Image Analysis, 2(1):1–36, 1998.

[111] Y. F. Mangall, A. Baxter, R. Avill, N. Bird, B. Brown, B. D, A. Seager, and A. John-

son. Applied potential tomography: a new non-invasive technique for assessing gastric

function. Clin. Phys. Physiol. Meas., 8:119–129, 1987.

[112] C. R. J. Maurer, G. B. Aboutanos, B. M. Dawant, S. Gadamsetty, R. A. Margolin, R. J.

Maciunas, and J. M. Fitzpatrick. Effect of geometrical distortion correction in MR on

image registration accuracy.J. Comput. Assist. Tomogr., 20(4):666–79, 1996.

[113] J. C. Mazziotta and M. E. Phelps. Human sensory stimulation and deprivation: positron

emission tomographic results and strategies.Ann. Neurol., 15(Suppl.):S50–S60, 1984.

[114] F. J. McArdle, B. H. Brown, R. G. Pearse, and D. C. Barber. The effect of the skull of low-

birthweight neonates on applied potential tomography imaging of centralised resistivity

changes.Clin. Phys. Physiol. Meas., 9(Suppl. A):55–60, 1988.

[115] A. McEwan, A. Romsauerova, R. Yerworth, L. Horesh, R. Bayford, and D. Holder. De-

sign and calibration of a compact multi-frequency EIT system for acute stroke imaging.

Physiol. Meas., 27:S199–S210, 2006.

[116] A. McEwan, R. Yerworth, R. Bayford, and D. Holder. Specification and calibration of a

multi-frequency MEIT system for stroke. In6th Conference on Biomedical Applications

of Electrical Impedance Tomography, London, UK, 2005.

[117] P. Metherall, D. C. Barber, R. H. Smallwood, and B. H. Brown. Three-dimensional

electrical impedance tomography.Nature, 380:509–512, 1996.

[118] A. Nachman. Global Uniqueness for a two-dimensional inverse Boundary Value Prob-

lem. Annals of Math., 143:71–96, 1996.

[119] F. Natterer.The mathematics of computerized tomography. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2001.

[120] J. C. Newell, R. S. Blue, D. Isaacson, G. J. Saulnier, and A. S. Ross. Phasic three-

dimensional impedance imaging of cardiac activity.Physiol. Meas., 23:203–209, 2002.

[121] P. W. Nicholson. Specific impedance of cerebral white matter.Experimental Neurology,

13:386–401, 1965.



252 Bibliography

[122] J. Nocedal and S. J. . Wright.Numerical optimization. Springer-Verlag, New York, 1999.

[123] E. Nolf. XMedCon - An open-source medical image conversion toolkit.European Jour-

nal of Nuclear Medicine, 30(2):S246, 2003.

[124] S. P. Novikov.Basic elements of differential geometry and topology. Kluwer Academic

Publishers, Dordretch,Boston, 1990.

[125] N. A. of Engineering. Greatest engineering achievements of the 20th century, 2005.

http://www.greatachievements.org.

[126] S. H. Oh, J. Y. Han, S. Y. Lee, M. H. Cho, B. I. Lee, and E. J. Woo. Electrical conductivity

imaging by Magnetic Resonance Electrical Impedance Tomography (MREIT).Magnetic

Resonance in Medicine, 50:875–878, 2003.

[127] J. O. Ollikainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio. Effects of local skull

inhomogeneities on eeg source estimation.Med. Eng. Phys., 21(3):143–54, 1999.

[128] K. S. Ostermana, T. E. Kerner, D. B. Williams, A. Hartov, S. P. Poplack, and K. D.

Paulsen. Multifrequency electrical impedance imaging: preliminary in vivo experience

in breast.Physiol. Meas., 21:99–109, 2000.

[129] C. C. Paige. Computer solution and perturbation analysis of generalised linear least

squares problems.Math. Comp., 33:171–183, 1979.

[130] C. C. Paige. Fast numerically stable computations for generalised least squares problems.

SIAM J. Numer. Anal., 16:165–171, 1979.

[131] C. C. Paige. The general linear model and the generalised singular value decomposition.

Linear Algebra Appl., 70:269–284, 1985.

[132] C. C. Pain, J. V. Herwanger, J. H. Saunders, M. H. Worthington, and Cassiano R E de

Oliviera. Anisotropic and the art of resistivity tomography.Inv. Problems, 19:1081–1111,

2003.

[133] A. Pang and P. M. Matthews. FMRIB, 2002. http://www.fmrib.ox.ac.uk/fmriintro/.

[134] R. D. Pascual-Marqui. Standardized low resolution brain electromagnetic tomography

(sloreta): technical details.Methods and Findings in Experimental and Clinical Phar-

macology, 24D:5–12, 2002.



Bibliography 253

[135] K. Paulson, W. Breckon, and M. Pidcock. Electrode modelling in electrical impedance

tomography.SIAM J. Appl. Math., 52:1012–1022, 1992.

[136] N. Petrick, A. O. H. III, N. H. Clinthorne, W. L. Rogers, and J. M. Slosar. Least squares

arrival time estimators for single and piled up scintillation pulses.IEEE Trans. Nuclear

Science, 40(4):1026–1030, 1993.

[137] M. E. Phelps. Molecular imaging with positron emission tomography.Annu. Rev. Nucl.

Part. Sci., 52:303–338, 2002.

[138] C. Phillips, J. Mattout, M. D. Rugg, P. Maquet, and K. J. Friston. An empirical bayesian

solution to the source reconstruction problem in eeg.NeuroImage, 24:997–1011, 2005.

[139] N. Polydorides.Image reconstruction algorithms for soft-field tomography. PhD thesis,

UMIST, Manchester, England, 2002.

[140] N. Polydorides and W. R. B. Lionheart. A Matlab toolkit for three-dimensional electrical

impedance Tomography: a contribution to the Electrical Impedance and Diffuse Optical

Reconstruction Software project.Meas. Sci. Technol., 13:1871–1883, 2002.

[141] N. Polydorides and W. R. B. Lionheart. Krylov Subspace Iterative Techniques: On the

Detection of brain activity with electrical impedance tomography.IEEE Trans. Medical

Imaging, 21:596–603, 2002.

[142] P. Ramachandran. The MayaVi Data Visualizer, 2002.

http://oldwww.rug.nl/hpc/VTK/vtk.htm.

[143] A. Rao. Electrical impedance tomography of brain activity: studies into its accuracy

and physiological mechanisms. PhD thesis, UCL, London, England, 2000.

[144] G. N. Reddy and S. Saha. Electrical and dielectrical properties of wet bone as a function

of frequency.IEEE Trans. Biomed. Eng., 31(3):296–302, 1984.

[145] A. Romsauerova, A. M. Ewan, L. Horesh, R. Yerworth, R. H. Bayford, and D. S. Holder.

Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial

findings in brain tumours, arteriovenous malformations and chronic stroke, development

of an analysis method and calibration.Physiol. Meas., 27(5):S147–S161, 2006.

[146] S. Rush and D. Driscoll. Current distribution in the brain from surface electrodes.Anas-

thesia and analgetica, 47(6):717–723, 1968.



254 Bibliography

[147] G. S. Russell, K. J. Eriksen, P. Poolman, P. Luu, and D. M. Tucker. Geodesic photogram-

metry for localizing sensor positions in dense-array EEG.Clinical Neurophysiology,

116:1130–1140, 2005.

[148] O. Sacks.The man who mistook his wife for a hat. Picador, London, Uk, 1986.

[149] R. J. Sadleir and R. A. Fox. Detection and quantification of intraperitonial fluid using

Electrical Impedance Tomography.IEEE Trans. Biomed. Eng., 48(4):484–491, 2001.

[150] S. Saha. Electric and dielectric properties of wet human cortical bone as a function of

frequency.IEEE Trans. Biomed. Eng., 39(12):1298–1304, 1992.

[151] F. Santosa and M. Vogelius. A backprojection algorithm for electrical impedance imag-

ing. SIAM J. Appl. Math., 50(1):216–243, 1990.

[152] R. Schindmes, L. Horesh, and D. S. Holder. The effect of using patient specific finite

element meshes for modelling and image reconstruction of electrical impedance tomog-

raphy of the human head, 2007. In progress.

[153] R. Schindmes, L. Horesh, and D. S. Holder. Technical report - generation of patient

specific finite element meshes of the human head for electrical impedance tomography,

2007. In progress.

[154] J. Schoberl. NETGEN: a three-dimensional mesh generation software, 1999.

http://www.hpfem.jku.at/netgen/.

[155] M. Schweiger and S. R. Arridge. Newton-Krylov solver for non-linear reconstruction in

diffusive optical tomography.Internal Report. UCL. London, 2004.

[156] J. K. Seo, O. Kwon, and E. J. Woo. Anisotropic conductivity image reconstruction prob-

lem in Bz-based MREIT. InProc. ICEBI XII-EIT V, pages 531–534, Gdansk, Poland,

2004.

[157] M. N. Shalit. The effect of metrazol on the hemodynamics and impedance of the cat’s

brain cortex.Neuropathol Exp. Neurolol., 24:75–84, 1965.

[158] D. W. Shattuck and R. M. Leahy. BrainSuite: an automated cortical surface identification

tool. Med. Image. Anal., 6(2):129–42, 2002.

[159] M. Soleimani.Image and shape reconstruction methods in Magnetic Induction and Elec-

trical Impedance Tomography. PhD thesis, University of Manchester, Manchester, Eng-

land, 2005.



Bibliography 255

[160] M. Soleimani, J. F. P.-J. Abascal, and W. R. B. Lionheart. Simultaneous reconstruction

of the boundary shape and conductivity in 3d electrical impedance tomography. InProc.

ICEBI XII-EIT V, pages 475–478, Gdansk, Poland, 2004.

[161] E. Somersalo, M. Cheney, and D. Isaacson. Existence and uniqueness for electrode

models for electric current computed tomography.SIAM J. Appl. Math., 52(4):1023–

1040, 1992.

[162] E. Somersalo, M. Cheney, D. Isaacson, and E. Isaacson. Layer stripping: a direct numer-

ical method for impedance tomography.Inv. Problems, 7(6):899–926, 1991.

[163] M. R. Spiegel. Schaum’s outline of theory and problems of vector analysis : and an

introduction to tensor analysis. Mc Graw-Hill, London, UK, 1974.

[164] J. W. Stayman and J. A. Fessler. Efficient calculation of resolution and covariance for

penalised-likelihood reconstruction in fully 3-D SPECT.IEEE Trans. Medical Imaging,

23:1543–1556, 2004.

[165] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse boundary value

problem.Annals of Math., 125:153–169, 1987.

[166] T. Tidswell. Functional Electrical Impedance Tomography of adult and neonatal brain

function. PhD thesis, UCL, London, England, 2002.

[167] T. Tidswell, A. Gibson, R. H. Bayford, and D. S. Holder. Validation of a 3D reconstruc-

tion algorithm for EIT of human brain function in a realistic head-shaped tank.Physiol.

Meas., 22:177–185, 2000.

[168] T. Tidswell, A. Gibson, R. H. Bayford, and D. S. Holder. Three-Dimensional Electrical

Impedance Tomography of Human Brain Activity.NeuroImage, 13:283–294, 2001.

[169] P. A. Tipler. Physics for scientists and engineers. W H Freeman & Co Ltd, New York,

1999.

[170] A. Tizzard, L. Horesh, R. J. Yerworth, D. S. Holder, and R. H. Bayford. Generating

accurate finite element meshes for the forward model of the human head in EIT.Physiol.

Meas., 26:S251–S261, 2005.

[171] N. J. Trujillo-Barreto, E. Aubert-V́azquez, and P. A. Valdés-Sosa. Bayesian model aver-

aging in EEG/MEG imaging.NeuroImage, 21:1300–1319, 2004.



256 Bibliography

[172] D. S. Tuch.Diffusion MRI of complex tissue structure. PhD thesis, Massachusetts Insti-

tute of Technology, Massachusetts, 2002.

[173] D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau. Conductivity

tensor mapping of the human brain using diffusion tensor mri.Proc. Natl. Acad. Sci.

USA, 98(20):11697–701, 2001.

[174] G. Uhlmann. Recent progress in the anisotropic electrical impedance problem.J. Diff.

Eq., 6:303–311, 2001.

[175] T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen, and M. Vauhkonen. Simulta-

neous reconstruction of electrode contact impedances and internal electrical properties:

I. Theory.Meas. Sci. Technol., 13(12):1848–1854, 2002.

[176] C. R. Vogel. Computational methods for inverse problems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2002.

[177] G. Wahba. Practical approximate solutions to linear operator equations when the data

are noisy.SIAM J. Numer. Anal., 14:651–667, 1977.

[178] M. Wang, T. F. Jones, and R. A. Williams. Visualization of asymmetric solids distri-

bution in horizontal swirling flows using electrical resistance tomography.Chemical

Engineering Research and Design, 81(A8):854–861, 2003.

[179] H. J. Weber and G. B. Arfken.Essential mathematical methods for physicists. Elsevier

Academic Press, London, UK, 2004.

[180] A. J. Wilson, P. Milnes, A. R. Waterworth, R. H. Smallwood, and B. H. Brown. Mk3.5:

a modular, multi-frequency successor to the Mk3a EIS/EIT system.Physiol. Meas.,

22:49–54, 2001.

[181] C. H. Wolters. Influence of tissue conductivity inhomogeneity and anisotropy on

EEG/EMG based source localization in the human brain. PhD thesis, University of

Leipzig, Leipzig, Germany, 2003.

[182] C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch, and R. S. MacLeod.

Influence of tissue conductivity anisotropy on EEG/EMG field and return current com-

putation in a realistic head model: A simulation and visualization study using high-

resolution finite element modeling.NeuroImage, 30(3):813–826, 2006.



Bibliography 257

[183] K. J. Worsley, S. MArrett, P. Neelin, and A. C. Evans. Searching scale space for activa-

tion in PET images.Human Brain Mapping, 4:74–90, 1996.

[184] P. Xu. Truncated SVD methods for discrete linear ill-posed problems.Geophys. J. Int.,

135:505–514, 1998.

[185] R. J. Yerworth, R. H. Bayford, G. Cusick, M. Conway, and D. S. Holder. Design and

performance of the UCLH Mark 1b 64 channel electrical impedance tomography (EIT)

system, optimized for imaging brain function.Physiol. Meas., 23:149–158, 2002.

[186] B. N. Zakhariev and V. M. Chabanov. New situation in quantum mechanics (wonderful

potentials from the inverse problem).Inv. Problems, 13:R47–R79, 1997.

[187] H. Zha and P. C. Hansen. Regularization and the general Gauss-Markov linear model.

Math. Comp., 55:613–624, 1990.



Index

additive noise, 78

Anisotropy (see conductivity), 68

CEM, 59

Conductivity tensor, 58, 67, 68, 173, 175, 178,

235, 236, 240

Covariance, 78, 83

Diffeomorphism, 68, 69, 132, 231, 238

Diffusion tensor, 151, 169, 173

Dirichlet-to-Neumann, 67, 137

Discrepancy Principle, 84, 99

Eigenvalue decomposition, 217

Forward problem, 52

Generalised Cross Validation, 85, 99

Generalised least squares, 79

Generalised SVD, 82

Hadamard’s conditions, 71

ill-conditioned, 79

Ill-posedness, 71, 79

inverse problem, 70

Jacobian, 70, 78, 137, 181, 221, 238

L-curve, 85, 99

Least Squares, 220

linear model, 78

Linear Regularisation, 80

Mark 1b UCLH EIT system, 96

Matched filtering theorem, 82

Optimisation, 73

Predictive error norm, 84, 99

Principal Component Analysis, 107, 225

Pseudo-inverse, 79, 220

rank, 138, 219

regularisation, 71

Regularisation parameter, 84, 90

Sensitivity matrix (see Jacobian), 70

Smoothing, 82

Solution error norm, 84, 99

SVD, 218

System matrix, 61, 62, 135, 180

Tikhonov, 81, 82

trace constraint, 173, 178, 240

Truncated SVD, 80

Unbiased Predictive Risk Estimator, 85, 99

Uniqueness, 67, 69, 132

258


