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ABSTRACT   

Recent progress in X-ray CT is contributing to the advent of new clinical applications. A common challenge for these 
applications is the need for new image reconstruction methods that meet tight constraints in radiation dose and 
geometrical limitations in the acquisition. The recent developments in sparse reconstruction methods provide a 
framework that permits obtaining good quality images from drastically reduced signal-to-noise-ratio and limited-view 
data.  

In this work, we present our contributions in this field. For dynamic studies (3D+Time), we explored the possibility of 
extending the exploitation of sparsity to the temporal dimension: a temporal operator based on modelling motion 
between consecutive temporal points in gated-CT and based on experimental time curves in contrast-enhanced CT. In 
these cases, we also exploited sparsity by using a prior image estimated from the complete acquired dataset and assessed 
the effect on image quality of using different sparsity operators. For limited-view CT, we evaluated total-variation 
regularization in different simulated limited-data scenarios from a real small animal acquisition with a cone-beam micro-
CT scanner, considering different angular span and number of projections. For other emerging imaging modalities, such 
as spectral CT, the image reconstruction problem is nonlinear, so we explored new efficient approaches to exploit 
sparsity for multi-energy CT data.  

In conclusion, we review our approaches to challenging CT data reconstruction problems and show results that support 
the feasibility for new clinical applications.   

Keywords: Sparsity, compressed sensing, L1-norm, split Bregman, contrast-enhanced CT, respiratory gated-CT, limited 
view CT, spectral CT 

1. INTRODUCTION  

Recent progress in X-ray CT is contributing to the advent of new clinical applications. A common challenge for these 
applications is the need for new image reconstruction methods that meet tight constraints in radiation dose and 
geometrical limitations in the acquisition.  

The revolutionary discovery of compressed sensing (CS) provides a framework that enables accurate image 
reconstruction from few noisy projections using convex optimization, provided that the image is sufficiently sparse in a 
transformed domain and that uniform random sampling and an incoherence condition hold.1 Given the success of CS, 
sparse regularization has become a preferred choice for designing iterative regularized schemes even if the CS 
assumptions are not met. Recent theoretical work also aims to extend the CS framework to more practical measurement 
conditions and for nonlinear measurement operators.2,3 Specifically, in x-ray imaging, sparsity has been proposed to 
improve image quality in cases of reduced signal-to-noise-ratio and limited-view data.4,5  

In this work, we present our contributions to exploiting sparsity for solving challenging problems in X-ray CT. Most of 
our contributions focus on high dimensionality problems, for which data redundancy and image sparsity can be highly 
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exploited. For dynamic studies (3D+Time), we have explored the possibility of extending the exploitation of sparsity to 
the temporal dimension. In this case, the Prior Image Constrained Compressed Sensing (PICCS) algorithm leads to 
superior results than the widely used total variation method, as images are highly sparse when subtracted from a prior 
image obtained by combining all data.6–8  

In respiratory gated-CT, we have explored several methods. We assessed the effect on image quality of using different 
sparsity operators within PICCS algorithm. An improved method obtained a sparser temporal representation by 
modelling motion between consecutive temporal points. We proposed two different motion-based reconstruction 
approaches. PRIMOR method modelled motion using B-splines and solved the optimization problem using the Split 
Bregman formulation.9 The second approach, named MA-ROOSTER, was applied to free breathing respiratory cone 
beam CT data. The optimization framework is empirical: it alternates between iterations of conjugate gradient to 
minimize a 4D data-attachment term, and several denoising steps: enforcing non-negativity, canceling motion outside the 
patient, spatial 3D TV, and temporal 1D TV along curved trajectories determined by a priori motion.10 The need for a 
reasonable a priori motion, e.g. estimated from a previously existing 4D reconstruction, is critical for MA-ROOSTER. In 
radiation therapy, its main target, patients undergo a 4D CT before treatment, therefore the prior information on motion 
is available in clinical routine. 

In contrast-enhanced CT, we proposed an alternative formulation to regularization based on replacing the original 
problem by a new one that is well conditioned. This approach was specifically designed for the case of slow rotating 
scanners for preclinical imaging. The idea was inspired on previous work where the solution was a combination of few 
temporal basis functions that modelled the contrast uptake.11 We reformulated the reconstruction problem as the recovery 
of piecewise cubic polynomials in the temporal dimension, which significantly reduced the number of degrees of 
freedom.12  

In limited-view CT, where only a few projections are taken in a reduced angular span, analytical reconstruction methods 
provide low quality images with lots of artifacts. We evaluated the viability of total variation method to solve this 
problem using numerical simulations based on geometrical description of a real scanner.13,14  

For other emerging imaging modalities, such as spectral CT, the image reconstruction problem is commonly divided in 
two steps, the material decomposition problem, which is nonlinear, and the tomographic step. Mostly all studies that 
proposed regularized- or sparsity-based approaches focused on the tomographic step. The material decomposition step is 
nonlinear and so it is more challenging to solve. In this problem, we have recently proposed an efficient regularized 
Gauss Newton approach to exploit specific regularization for each material.15  

 

2. RESPIRATORY GATED CT 

Respiratory gating helps to overcome the problem of breathing motion in cardiothoracic imaging, which is relevant in 
several clinical situations.16,17 The gating process assigns acquired projections to the different respiratory phases, which 
leads to insufficient data for the reconstruction of each phase when using standard reconstruction algorithms. Hence, 
using conventional reconstruction methods requires acquiring more data, which results in a substantial increase in the 
radiation dose. In this section, we propose several sparse reconstruction methods that exploit sparsity in the temporal 
dimension. 

2.1 Investigation of different sparsity transforms for PICCS algorithm 

Prior image constrained compressed sensing (PICCS) has been proposed for reconstructing gated CT data from highly 
undersampled and noisy data.7,8 PICCS has led to significant improvements in image quality with respect to the total 
variation method, in a wide variety of applications. Its success is because reconstructed images are highly sparse when 
subtracted from a prior image, which is obtained by combining all data. PICCS solves the convex constrained 
optimization problem  
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where u represents the reconstructed gates, up represent the prior image, p represents the raw data for all respiratory 
phases, R represents the forward operator, σ2 accounts for noise in the data, and α weights the image prior penalty 
function. The first and second terms in (1) impose spatial sparsity and temporal sparsity with respect to the prior image, 
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respectively. The common choice for the transformations Ψ and Ф is the spatial discrete gradient that leads to total 
variation functional. However, other functional may lead to superior results.  

In this work, we evaluated the suitability of different sparsity transforms for Ф (unitary, gradient, and symlet wavelet 
transform) within the PICCS formulation for reducing dose in CT respiratory gating for small-animal imaging.18 This 
lead to three different flavors of PICCS: L1-PICCS, TV-PICS and WT-PICCS. Methods were assessed in different 
scenarios, corresponding to different X-ray flux levels and number of projections. Problem (1) was solved using the Split 
Bregman formulation, which efficiently solves L1-regularized problems.19,20 All flavors of PICCS performed very 
similarly in terms of noise, spatiotemporal resolution, and streak reduction. Nevertheless, the wavelet transform led to 
superior image texture than the other transforms (figure 1). The gradient and unitary transforms led to staircase-like 
artefacts and pixel-like artefacts, respectively. PICCS led to significantly improvement in image quality with respect to 
filtered back-projection and allowed to reduce the respiratory motion artefact.  

 

 

Figure 1. Zoomed-in images of reconstructed images with the different methods for one respiratory phase. Gated data consisted 
of 120 projections per respiratory phase and X-ray flux corresponding to a number of photons I0 = 4.5∙104.  

 

2.2 PRIMOR - A prior- and motion-based reconstruction method 

In this work, we proposed a prior- and motion-based compressed sensing (PRIMOR) method for respiratory gating in 
small-animal CT.21 PRIMOR is a combination of both prior- and motion-based reconstruction methods. Thus, it benefits 
from the advantages of these two approaches. On the one hand, it exploits the available prior image, and on the other 
hand, it takes into account motion between consecutive respiratory gates, which leads to sparser representation in the 
temporal dimension.   

PRIMOR is implemented as a two-step approach. In the first step, motion is estimated using a nonrigid registration 
method based on hierarchical B-splines.22 In the second step, only image variation with respect to the prior is 
reconstructed using the previously estimated motion. PRIMOR method solved the problem 
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where up is the prior image, v is the image variation with respect to the prior image, u= up+v, and T is an operator that 
encodes motion between respiratory phases. PRIMOR was solved using the split Bregman formulation and was 
compared to an equivalent prior-based method without motion estimation on different simulated scenarios (MATLAB 
code for PRIMOR method can be found https://github.com/HGGM-LIM/prior-motion-reconstruction-CT). Both 
PRIMOR and prior-based methods greatly improved FDK reconstruction in all scenarios. The prior-based method was 
prone to streak artefacts and noise when using a low number of projections or low dose. PRIMOR corrected for these 
effects, leading to better contrast recovery, less error and improved motion artefact correction (figure 2). 
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Figure 2. Zoomed-in of reconstructed images with FDK, prior-based method (PBR) and PRIMOR method, for different scenarios 
corresponding to different number of projections and number of photons (I0 = 4.5∙104). Yellow arrows indicate where 
artifacts are more noticeable: an increase in streak artifacts (1), blurred edges for bone tissue (2), blurred edges for soft tissue 
(3), loss of contrast resolution within bone tissue (4). 

 

2.3 MA-ROOSTER – Motion-Aware RecOnstructiOn using Spatial and TEmporal Regularization 

MA-ROOSTER assumes that a motion mask, i.e. a rough segmentation of the region where movement is expected to 
occur, is available.10,23 As motion can occur outside the lungs, since the rib cage and the abdomen move during 
breathing, the simplest option is to use the whole patient mask. It also assumes that a prior estimation of the patient’s 
breathing motion is available. This prior motion estimation need not be accurate: if the temporal regularization is not too 
strong, MA-ROOSTER will partially correct for motion misestimation.  

The algorithm alternates between several optimization goals. It consists in solving the following five subproblems at 
each iteration of the main loop: 

- Minimizing the data-attachment term, 
 ∑
α
‖ RαSα f − pα‖ 2

2

 , by 4D conjugate gradient (CG) 

- Enforcing positivity, by setting all negative voxels of f to zero 

- Removing motion where it is not expected to occur, by averaging along time outside the motion mask 

- Enforcing the spatial gradient’s sparsity in each frame using 3D total variation (TV) denoising 

- Enforcing the temporal gradient’s sparsity for each spatial position, by one-dimensional (1D) TV denoising along time  

In order to account for the estimated breathing motion, all frames are warped to a single reference before temporal TV 
denoising. The warped frames only differ where the motion estimation was inaccurate, or where the attenuation varies 
over time as a consequence of tissue density change (typically, the lungs are denser at end-exhale than at end-inhale). 
After temporal denoising, each frame is warped back to its original state. 

Each supbroblem’s output is used as the input for the next subproblem. This constitutes one iteration of the main loop, 
the output of which is fed back to the CG minimizer for the next iteration. Results are shown in figure 3.  
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Figure 3. From left to right: 4D-FDK, 4D conjugate gradient (no regularization), MA-ROOSTER 

 

3. CONTRAST-ENHANCED CT 

Dynamic contrast enhanced CT can be used to measure perfusion, thus enabling a quantitative assessment of vascular 
integrity. Reconstruction of dynamic sequences of 3D images from complete projections acquired is unfeasible for most 
of small-animal cone-beam scanners because the distribution of the contrast agent changes during the acquisition and 
leads to inconsistent projections. We proposed a new algorithm to achieve 4D reconstructions of dynamic CT in case of 
slow cone-beam scanners.12 The problem of 4D reconstructions of dynamic CT in case of slow cone-beam scanners is 
very ill-posed as there is only one projection per time point. To tackle this we have reformulated the 4D reconstruction 
problem as the recovery of piecewise cubic polynomials in the temporal dimension, which was sufficient to model the 
input function and contrast uptake. This led to a large reduction on the number of unknowns. In order to make the 
problem well-posed further assumptions were assumed, such as assuming an anatomical prior is available and focusing 
only in those areas that change. This prior anatomical image could be obtained from an acquisition prior to contrast 
injection. The spatially- and temporally-dependent attenuation map, u(x,y,tj), was described at each time point as follows: 
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Continuity and differentiability were imposed at the interval boundaries. The image reconstruction problem was then 
written as a constrained linear least-squares problem:  

               
eqeq
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                                                           (4) 

The algorithm was assessed on a pseudo-simulated phantom consisting of four ROIs that modelled the fast input function 
and contrast accumulation in kidney on small animal. The proposed method yielded smooth time curves that captured the 
relatively fast rise and fall of contrast in the tail veil (input function), as well as the uptake and retention of contrast in the 
kidneys (figure 4).  
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Figure 4. Fit of time curves: original curve (dotted line) and reconstructed one (continuous line) for the four ROIs. 

 

4. LIMITED ANGLE CT 

Limited-view CT poses the challenge of doing tomography from few projections in a limited-view angle scan. In this 
study we presented a preliminary study of the possibilities of solving this problem using total variation regularization 
based on the Split Bregman formulation.13,14 Image reconstruction was posed as the following constrained optimization 
problem: 

22
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                                                   (5) 

The method was evaluated in different simulated limited-data scenarios from a real small animal acquisition with a cone-
beam micro-CT scanner, considering different angular span and number of projections. Results showed that the proposed 
method led to a large reduction of the streak artifacts and allowed to recover the edges in the reconstructed images, 
compared to the FDK algorithm, in the case of angular span of 60 or 90 degrees (figure 5).  
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Figure 5. Reconstructed image with FDK (top) and with the proposed method (bottom). Different limited-data  configurations 
with angular span of 60º (left), 90º (center) and 130º (right). All with a step angle of 1º. 

 

5. SPECTRAL CT 

The new generation of Spectral Computed Tomography (SCT) scanners provide energy-dependent information that 
translates into material decomposition capabilities.24 However, the increase in energy resolution leads to lower signal-to-
noise ratio than standard CT scanners, so new regularized reconstruction schemes are needed. The image reconstruction 
problem in spectral CT is commonly divided in two steps, the material decomposition problem, which is nonlinear, and 
the tomographic step. Mostly all studies that proposed regularized- or sparsity-based approaches focused on the 
tomographic step. In this study, we introduced a regularized Gauss Newton approach to exploit specific regularization 
for each material.15 Let a be the unknown material images, s the measured SCT data, F the nonlinear forward operator, 
and J a convex regularization functional. We proposed to perform  material decomposition by solving the following 
problem: 


m

mmWa
aJsaF )()(  min

2                                                                    (6) 

where Jm is the specific regularization functional for the m-th material, W is diagonal weighting matrix chosen to handle 
Poisson noise, and α is the regularization parameter. The proposed regularized weighted least squares Gauss-Newton 
algorithm (RWLS-GN) was assessed in a numerical thorax phantom made of up to five materials (soft tissue, bone, lung, 
adipose tissue, and portal vein marked with gadolinium). It was scanned with a 120-kV source and imaged by a 4-bin 
photon counting detector. Data was decomposed into three materials: soft tissue, bone and gadolinium. Regularization 
functionals were chosen as total variation for the marker, first-order Tikhonov for bone and second-order for soft tissues. 
A smooth functional was assumed for soft tissue as we are working on the projection domain. The proposed method was 
compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM).25 MATLAB code for RWLS-GN 
method can be found at https://www.creatis.insa-lyon.fr/~ducros/WebPage/spray.html. 

ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise and artifacts. RWLS-GN 
was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. In addition, the proposed 
method was 70 times faster than ML-NM (figure 6). 
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Figure 6. Material decomposition of one 2D projection of a thorax phantom where the portal vein was marked with gadolinium. 
Top: Ground-truth material images (from left to right: soft tissue, bone, and gadolinium). Bottom: Materials imaged 
decomposed using the proposed RWLS-GN method (left) and the ML-NM method (right). The gadolinium concentration 
was set to 1 g.cm-3 and the number of incident photons to 107.  

 

6. DISCUSSION 

We have presented several contributions to specific X-ray CT applications where the problem is ill-posed, so 
regularization is needed. L1-regularization led to large improvement in image quality, with the largest benefits found for 
high-dimensional problems. This is the case of respiratory-gated CT, where exploiting sparsity with respect to the prior 
image (temporal average) allowed to significantly decrease dose and to reduce artefacts associated to respiratory 
movement. Further exploitation of temporal sparsity was achieved by modelling the motion between consecutive 
respiratory gates. This led to a significant dose reduction with respect to prior-based methods on both preclinical and 
clinical applications.  

In enhanced contrast CT, reformulating the problem as the recovery of piecewise cubic polynomials in the temporal 
dimension and assuming that an anatomical prior image was available led to large reduction on the number of unknowns. 
This makes the problem better conditioned and has some computational advantages with respect to the common 
approach, as the number of unknowns is decreased considerably, but future work is required to compare the proposed 
methodology to more standardized approaches.  

In the case of static imaging, the use of total variation regularization led to a large reduction of both streak artefacts and 
object distortion with respect to FDK. For this challenging problem, other functionals, such as nonlocal TV 26 and 
generalized total variation,27 would lead to superior results than total variation.  

Exploiting sparsity and generalizing compressed sensing for nonlinear problems is of current interest for many different 
imaging modalities. The material decomposition problem in spectral CT falls into this category, where measured 
projections at different energy bins are decomposed into different materials. We have shown that specific regularization 
for each material leads to superior results. In this case, we have combined smooth regularization functional for some 
materials and total variation for other material, which led to superior results. Authors believe that exploiting sparsity in 
spectral CT imaging has still a lot to offer.  

In brief, we have shown different strategies to solve challenging problems in CT. Sparsity and more specifically L1-
regularization is present in most of the proposed methods. Now, we ask ourselves the following question: has sparsity 
reached a dead end or is the best yet to come?  
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